Extensions 1→N→G→Q→1 with N=C3 and Q=D12.C4

Direct product G=N×Q with N=C3 and Q=D12.C4
dρLabelID
C3×D12.C4484C3xD12.C4288,678

Semidirect products G=N:Q with N=C3 and Q=D12.C4
extensionφ:Q→Aut NdρLabelID
C31(D12.C4) = C24.64D6φ: D12.C4/S3×C8C2 ⊆ Aut C3484C3:1(D12.C4)288,452
C32(D12.C4) = C24.D6φ: D12.C4/C8⋊S3C2 ⊆ Aut C3484C3:2(D12.C4)288,453
C33(D12.C4) = C3⋊C8.22D6φ: D12.C4/C2×C3⋊C8C2 ⊆ Aut C3484C3:3(D12.C4)288,465
C34(D12.C4) = C24.47D6φ: D12.C4/C3×M4(2)C2 ⊆ Aut C3144C3:4(D12.C4)288,764
C35(D12.C4) = D12.Dic3φ: D12.C4/C4○D12C2 ⊆ Aut C3484C3:5(D12.C4)288,463

Non-split extensions G=N.Q with N=C3 and Q=D12.C4
extensionφ:Q→Aut NdρLabelID
C3.(D12.C4) = D36.C4φ: D12.C4/C3×M4(2)C2 ⊆ Aut C31444C3.(D12.C4)288,117

׿
×
𝔽