Copied to
clipboard

G = C3:C8.22D6order 288 = 25·32

11st non-split extension by C3:C8 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial

Aliases: C3:C8.22D6, C3:3(C8oD12), C12.42(C4xS3), C32:6(C8oD4), C12:S3.2C4, C3:3(D12.C4), (C2xC12).290D6, C4.Dic3:11S3, C62.47(C2xC4), C32:7D4.2C4, C32:4Q8.2C4, (C6xC12).68C22, C4.4(C6.D6), C12.31D6:11C2, C12.29D6:10C2, (C3xC12).146C23, C12.145(C22xS3), C12.59D6.4C2, C22.1(C6.D6), (C2xC3:C8):4S3, (C6xC3:C8):18C2, C4.92(C2xS32), (C2xC4).63S32, C6.26(S3xC2xC4), (C2xC6).18(C4xS3), (C3xC12).58(C2xC4), (C3xC3:C8).27C22, C2.4(C2xC6.D6), (C4xC3:S3).59C22, (C3xC4.Dic3):11C2, C3:Dic3.19(C2xC4), (C3xC6).42(C22xC4), (C2xC3:S3).15(C2xC4), SmallGroup(288,465)

Series: Derived Chief Lower central Upper central

C1C3xC6 — C3:C8.22D6
C1C3C32C3xC6C3xC12C3xC3:C8C12.29D6 — C3:C8.22D6
C32C3xC6 — C3:C8.22D6
C1C4C2xC4

Generators and relations for C3:C8.22D6
 G = < a,b,c,d | a3=b8=1, c6=b2, d2=b4, bab-1=cac-1=dad-1=a-1, cbc-1=dbd-1=b5, dcd-1=b4c5 >

Subgroups: 506 in 144 conjugacy classes, 52 normal (36 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, Q8, C32, Dic3, C12, C12, D6, C2xC6, C2xC6, C2xC8, M4(2), C4oD4, C3:S3, C3xC6, C3xC6, C3:C8, C3:C8, C24, Dic6, C4xS3, D12, C3:D4, C2xC12, C2xC12, C8oD4, C3:Dic3, C3xC12, C2xC3:S3, C62, S3xC8, C8:S3, C2xC3:C8, C4.Dic3, C2xC24, C3xM4(2), C4oD12, C3xC3:C8, C3xC3:C8, C32:4Q8, C4xC3:S3, C12:S3, C32:7D4, C6xC12, C8oD12, D12.C4, C12.29D6, C12.31D6, C6xC3:C8, C3xC4.Dic3, C12.59D6, C3:C8.22D6
Quotients: C1, C2, C4, C22, S3, C2xC4, C23, D6, C22xC4, C4xS3, C22xS3, C8oD4, S32, S3xC2xC4, C6.D6, C2xS32, C8oD12, D12.C4, C2xC6.D6, C3:C8.22D6

Smallest permutation representation of C3:C8.22D6
On 48 points
Generators in S48
(1 9 17)(2 18 10)(3 11 19)(4 20 12)(5 13 21)(6 22 14)(7 15 23)(8 24 16)(25 41 33)(26 34 42)(27 43 35)(28 36 44)(29 45 37)(30 38 46)(31 47 39)(32 40 48)
(1 43 7 25 13 31 19 37)(2 32 8 38 14 44 20 26)(3 45 9 27 15 33 21 39)(4 34 10 40 16 46 22 28)(5 47 11 29 17 35 23 41)(6 36 12 42 18 48 24 30)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 15 13 3)(2 8 14 20)(4 18 16 6)(5 11 17 23)(7 21 19 9)(10 24 22 12)(25 27 37 39)(26 44 38 32)(28 30 40 42)(29 47 41 35)(31 33 43 45)(34 36 46 48)

G:=sub<Sym(48)| (1,9,17)(2,18,10)(3,11,19)(4,20,12)(5,13,21)(6,22,14)(7,15,23)(8,24,16)(25,41,33)(26,34,42)(27,43,35)(28,36,44)(29,45,37)(30,38,46)(31,47,39)(32,40,48), (1,43,7,25,13,31,19,37)(2,32,8,38,14,44,20,26)(3,45,9,27,15,33,21,39)(4,34,10,40,16,46,22,28)(5,47,11,29,17,35,23,41)(6,36,12,42,18,48,24,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,15,13,3)(2,8,14,20)(4,18,16,6)(5,11,17,23)(7,21,19,9)(10,24,22,12)(25,27,37,39)(26,44,38,32)(28,30,40,42)(29,47,41,35)(31,33,43,45)(34,36,46,48)>;

G:=Group( (1,9,17)(2,18,10)(3,11,19)(4,20,12)(5,13,21)(6,22,14)(7,15,23)(8,24,16)(25,41,33)(26,34,42)(27,43,35)(28,36,44)(29,45,37)(30,38,46)(31,47,39)(32,40,48), (1,43,7,25,13,31,19,37)(2,32,8,38,14,44,20,26)(3,45,9,27,15,33,21,39)(4,34,10,40,16,46,22,28)(5,47,11,29,17,35,23,41)(6,36,12,42,18,48,24,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,15,13,3)(2,8,14,20)(4,18,16,6)(5,11,17,23)(7,21,19,9)(10,24,22,12)(25,27,37,39)(26,44,38,32)(28,30,40,42)(29,47,41,35)(31,33,43,45)(34,36,46,48) );

G=PermutationGroup([[(1,9,17),(2,18,10),(3,11,19),(4,20,12),(5,13,21),(6,22,14),(7,15,23),(8,24,16),(25,41,33),(26,34,42),(27,43,35),(28,36,44),(29,45,37),(30,38,46),(31,47,39),(32,40,48)], [(1,43,7,25,13,31,19,37),(2,32,8,38,14,44,20,26),(3,45,9,27,15,33,21,39),(4,34,10,40,16,46,22,28),(5,47,11,29,17,35,23,41),(6,36,12,42,18,48,24,30)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,15,13,3),(2,8,14,20),(4,18,16,6),(5,11,17,23),(7,21,19,9),(10,24,22,12),(25,27,37,39),(26,44,38,32),(28,30,40,42),(29,47,41,35),(31,33,43,45),(34,36,46,48)]])

54 conjugacy classes

class 1 2A2B2C2D3A3B3C4A4B4C4D4E6A6B6C6D6E6F6G6H8A8B8C8D8E···8J12A···12F12G···12K24A···24H24I24J24K24L
order12222333444446666666688888···812···1212···1224···2424242424
size112181822411218182222444433336···62···24···46···612121212

54 irreducible representations

dim11111111122222222444444
type++++++++++++++
imageC1C2C2C2C2C2C4C4C4S3S3D6D6C4xS3C4xS3C8oD4C8oD12S32C6.D6C2xS32C6.D6D12.C4C3:C8.22D6
kernelC3:C8.22D6C12.29D6C12.31D6C6xC3:C8C3xC4.Dic3C12.59D6C32:4Q8C12:S3C32:7D4C2xC3:C8C4.Dic3C3:C8C2xC12C12C2xC6C32C3C2xC4C4C4C22C3C1
# reps12211122411424448111124

Matrix representation of C3:C8.22D6 in GL6(F73)

100000
010000
001000
000100
0000721
0000720
,
4600000
0460000
0005100
0022000
00004627
0000027
,
0460000
27270000
0022000
0005100
00002746
0000046
,
0720000
7200000
0027000
0004600
0000721
000001

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[46,0,0,0,0,0,0,46,0,0,0,0,0,0,0,22,0,0,0,0,51,0,0,0,0,0,0,0,46,0,0,0,0,0,27,27],[0,27,0,0,0,0,46,27,0,0,0,0,0,0,22,0,0,0,0,0,0,51,0,0,0,0,0,0,27,0,0,0,0,0,46,46],[0,72,0,0,0,0,72,0,0,0,0,0,0,0,27,0,0,0,0,0,0,46,0,0,0,0,0,0,72,0,0,0,0,0,1,1] >;

C3:C8.22D6 in GAP, Magma, Sage, TeX

C_3\rtimes C_8._{22}D_6
% in TeX

G:=Group("C3:C8.22D6");
// GroupNames label

G:=SmallGroup(288,465);
// by ID

G=gap.SmallGroup(288,465);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,56,64,219,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^8=1,c^6=b^2,d^2=b^4,b*a*b^-1=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=b^5,d*c*d^-1=b^4*c^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<