Extensions 1→N→G→Q→1 with N=C3 and Q=D8⋊S3

Direct product G=N×Q with N=C3 and Q=D8⋊S3
dρLabelID
C3×D8⋊S3484C3xD8:S3288,682

Semidirect products G=N:Q with N=C3 and Q=D8⋊S3
extensionφ:Q→Aut NdρLabelID
C31(D8⋊S3) = D24⋊S3φ: D8⋊S3/C8⋊S3C2 ⊆ Aut C3484C3:1(D8:S3)288,443
C32(D8⋊S3) = C246D6φ: D8⋊S3/C24⋊C2C2 ⊆ Aut C3484C3:2(D8:S3)288,446
C33(D8⋊S3) = D12.D6φ: D8⋊S3/D4⋊S3C2 ⊆ Aut C3488-C3:3(D8:S3)288,575
C34(D8⋊S3) = D125D6φ: D8⋊S3/D4.S3C2 ⊆ Aut C3248+C3:4(D8:S3)288,585
C35(D8⋊S3) = C248D6φ: D8⋊S3/C3×D8C2 ⊆ Aut C372C3:5(D8:S3)288,768
C36(D8⋊S3) = D129D6φ: D8⋊S3/S3×D4C2 ⊆ Aut C3488-C3:6(D8:S3)288,580
C37(D8⋊S3) = Dic63D6φ: D8⋊S3/D42S3C2 ⊆ Aut C3488+C3:7(D8:S3)288,573

Non-split extensions G=N.Q with N=C3 and Q=D8⋊S3
extensionφ:Q→Aut NdρLabelID
C3.(D8⋊S3) = D8⋊D9φ: D8⋊S3/C3×D8C2 ⊆ Aut C3724C3.(D8:S3)288,121

׿
×
𝔽