Copied to
clipboard

G = D8⋊S3order 96 = 25·3

2nd semidirect product of D8 and S3 acting via S3/C3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C82D6, D82S3, D42D6, D6.6D4, C244C22, C12.2C23, Dic3.8D4, Dic61C22, D12.1C22, D4⋊S32C2, (C3×D8)⋊4C2, (S3×D4)⋊2C2, C3⋊C81C22, C8⋊S33C2, C24⋊C23C2, C32(C8⋊C22), D4.S31C2, C6.28(C2×D4), C2.16(S3×D4), D42S31C2, (C3×D4)⋊2C22, C4.2(C22×S3), (C4×S3).1C22, SmallGroup(96,118)

Series: Derived Chief Lower central Upper central

C1C12 — D8⋊S3
C1C3C6C12C4×S3S3×D4 — D8⋊S3
C3C6C12 — D8⋊S3
C1C2C4D8

Generators and relations for D8⋊S3
 G = < a,b,c,d | a8=b2=c3=d2=1, bab=a-1, ac=ca, dad=a5, bc=cb, bd=db, dcd=c-1 >

Subgroups: 194 in 68 conjugacy classes, 27 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2×C4, D4, D4, Q8, C23, Dic3, Dic3, C12, D6, D6, C2×C6, M4(2), D8, D8, SD16, C2×D4, C4○D4, C3⋊C8, C24, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C3×D4, C22×S3, C8⋊C22, C8⋊S3, C24⋊C2, D4⋊S3, D4.S3, C3×D8, S3×D4, D42S3, D8⋊S3
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C22×S3, C8⋊C22, S3×D4, D8⋊S3

Character table of D8⋊S3

 class 12A2B2C2D2E34A4B4C6A6B6C8A8B1224A24B
 size 114461222612288412444
ρ1111111111111111111    trivial
ρ2111-111111-111-1-1-11-1-1    linear of order 2
ρ3111-1-1-111-1111-1-111-1-1    linear of order 2
ρ411-111-111111-11-1-11-1-1    linear of order 2
ρ511-11-1111-1-11-11-111-1-1    linear of order 2
ρ61111-1-111-1-11111-1111    linear of order 2
ρ711-1-11-1111-11-1-111111    linear of order 2
ρ811-1-1-1111-111-1-11-1111    linear of order 2
ρ92200202-2-2020000-200    orthogonal lifted from D4
ρ10222200-1200-1-1-120-1-1-1    orthogonal lifted from S3
ρ1122-2-200-1200-11120-1-1-1    orthogonal lifted from D6
ρ12222-200-1200-1-11-20-111    orthogonal lifted from D6
ρ1322-2200-1200-11-1-20-111    orthogonal lifted from D6
ρ142200-202-22020000-200    orthogonal lifted from D4
ρ15440000-2-400-20000200    orthogonal lifted from S3×D4
ρ164-400004000-40000000    orthogonal lifted from C8⋊C22
ρ174-40000-2000200000-6--6    complex faithful
ρ184-40000-2000200000--6-6    complex faithful

Permutation representations of D8⋊S3
On 24 points - transitive group 24T141
Generators in S24
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 8)(3 7)(4 6)(9 11)(12 16)(13 15)(17 21)(18 20)(22 24)
(1 19 10)(2 20 11)(3 21 12)(4 22 13)(5 23 14)(6 24 15)(7 17 16)(8 18 9)
(1 5)(3 7)(9 18)(10 23)(11 20)(12 17)(13 22)(14 19)(15 24)(16 21)

G:=sub<Sym(24)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,8)(3,7)(4,6)(9,11)(12,16)(13,15)(17,21)(18,20)(22,24), (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,17,16)(8,18,9), (1,5)(3,7)(9,18)(10,23)(11,20)(12,17)(13,22)(14,19)(15,24)(16,21)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,8)(3,7)(4,6)(9,11)(12,16)(13,15)(17,21)(18,20)(22,24), (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,17,16)(8,18,9), (1,5)(3,7)(9,18)(10,23)(11,20)(12,17)(13,22)(14,19)(15,24)(16,21) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,8),(3,7),(4,6),(9,11),(12,16),(13,15),(17,21),(18,20),(22,24)], [(1,19,10),(2,20,11),(3,21,12),(4,22,13),(5,23,14),(6,24,15),(7,17,16),(8,18,9)], [(1,5),(3,7),(9,18),(10,23),(11,20),(12,17),(13,22),(14,19),(15,24),(16,21)]])

G:=TransitiveGroup(24,141);

D8⋊S3 is a maximal subgroup of
D813D6  SD16⋊D6  D811D6  S3×C8⋊C22  D84D6  D85D6  D86D6  D8⋊D9  D24⋊S3  C246D6  Dic63D6  D12.D6  D129D6  D125D6  C248D6  D40⋊S3  C408D6  D60.C22  D30.8D4  D2010D6  Dic6⋊D10  D8⋊D15
D8⋊S3 is a maximal quotient of
D4.S3⋊C4  D4⋊Dic6  Dic62D4  D4.Dic6  C4⋊C4.D6  C12⋊Q8⋊C2  C4⋊C419D6  D4⋊(C4×S3)  D65SD16  D6.SD16  D6⋊C811C2  C3⋊C81D4  D43D12  C3⋊C8⋊D4  D4⋊S3⋊C4  D12.D4  Dic3.Q16  C244Q8  C8⋊S3⋊C4  D6.2Q16  C2.D8⋊S3  C83D12  C24⋊C2⋊C4  D12.2Q8  Dic3⋊D8  D8⋊Dic3  (C6×D8).C2  C2411D4  D12⋊D4  Dic6⋊D4  C2412D4  D8⋊D9  D24⋊S3  C246D6  Dic63D6  D12.D6  D129D6  D125D6  C248D6  D40⋊S3  C408D6  D60.C22  D30.8D4  D2010D6  Dic6⋊D10  D8⋊D15

Matrix representation of D8⋊S3 in GL4(𝔽5) generated by

0433
1430
0204
0011
,
4200
0100
0301
0210
,
3002
0011
4443
1001
,
4002
0111
0043
0001
G:=sub<GL(4,GF(5))| [0,1,0,0,4,4,2,0,3,3,0,1,3,0,4,1],[4,0,0,0,2,1,3,2,0,0,0,1,0,0,1,0],[3,0,4,1,0,0,4,0,0,1,4,0,2,1,3,1],[4,0,0,0,0,1,0,0,0,1,4,0,2,1,3,1] >;

D8⋊S3 in GAP, Magma, Sage, TeX

D_8\rtimes S_3
% in TeX

G:=Group("D8:S3");
// GroupNames label

G:=SmallGroup(96,118);
// by ID

G=gap.SmallGroup(96,118);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,362,116,297,159,69,2309]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^3=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^5,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Character table of D8⋊S3 in TeX

׿
×
𝔽