metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C8⋊2D6, D8⋊2S3, D4⋊2D6, D6.6D4, C24⋊4C22, C12.2C23, Dic3.8D4, Dic6⋊1C22, D12.1C22, D4⋊S3⋊2C2, (C3×D8)⋊4C2, (S3×D4)⋊2C2, C3⋊C8⋊1C22, C8⋊S3⋊3C2, C24⋊C2⋊3C2, C3⋊2(C8⋊C22), D4.S3⋊1C2, C6.28(C2×D4), C2.16(S3×D4), D4⋊2S3⋊1C2, (C3×D4)⋊2C22, C4.2(C22×S3), (C4×S3).1C22, SmallGroup(96,118)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D8⋊S3
G = < a,b,c,d | a8=b2=c3=d2=1, bab=a-1, ac=ca, dad=a5, bc=cb, bd=db, dcd=c-1 >
Subgroups: 194 in 68 conjugacy classes, 27 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2×C4, D4, D4, Q8, C23, Dic3, Dic3, C12, D6, D6, C2×C6, M4(2), D8, D8, SD16, C2×D4, C4○D4, C3⋊C8, C24, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C3×D4, C22×S3, C8⋊C22, C8⋊S3, C24⋊C2, D4⋊S3, D4.S3, C3×D8, S3×D4, D4⋊2S3, D8⋊S3
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C22×S3, C8⋊C22, S3×D4, D8⋊S3
Character table of D8⋊S3
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 6A | 6B | 6C | 8A | 8B | 12 | 24A | 24B | |
size | 1 | 1 | 4 | 4 | 6 | 12 | 2 | 2 | 6 | 12 | 2 | 8 | 8 | 4 | 12 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 0 | 0 | 2 | 0 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | 0 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 2 | 0 | 0 | -1 | 1 | 1 | 2 | 0 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 2 | -2 | 0 | 0 | -1 | 2 | 0 | 0 | -1 | -1 | 1 | -2 | 0 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | -2 | 2 | 0 | 0 | -1 | 2 | 0 | 0 | -1 | 1 | -1 | -2 | 0 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | 0 | 0 | -2 | 0 | 2 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ16 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ17 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | √-6 | -√-6 | complex faithful |
ρ18 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -√-6 | √-6 | complex faithful |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 8)(3 7)(4 6)(9 11)(12 16)(13 15)(17 21)(18 20)(22 24)
(1 19 10)(2 20 11)(3 21 12)(4 22 13)(5 23 14)(6 24 15)(7 17 16)(8 18 9)
(1 5)(3 7)(9 18)(10 23)(11 20)(12 17)(13 22)(14 19)(15 24)(16 21)
G:=sub<Sym(24)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,8)(3,7)(4,6)(9,11)(12,16)(13,15)(17,21)(18,20)(22,24), (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,17,16)(8,18,9), (1,5)(3,7)(9,18)(10,23)(11,20)(12,17)(13,22)(14,19)(15,24)(16,21)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,8)(3,7)(4,6)(9,11)(12,16)(13,15)(17,21)(18,20)(22,24), (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,17,16)(8,18,9), (1,5)(3,7)(9,18)(10,23)(11,20)(12,17)(13,22)(14,19)(15,24)(16,21) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,8),(3,7),(4,6),(9,11),(12,16),(13,15),(17,21),(18,20),(22,24)], [(1,19,10),(2,20,11),(3,21,12),(4,22,13),(5,23,14),(6,24,15),(7,17,16),(8,18,9)], [(1,5),(3,7),(9,18),(10,23),(11,20),(12,17),(13,22),(14,19),(15,24),(16,21)]])
G:=TransitiveGroup(24,141);
D8⋊S3 is a maximal subgroup of
D8⋊13D6 SD16⋊D6 D8⋊11D6 S3×C8⋊C22 D8⋊4D6 D8⋊5D6 D8⋊6D6 D8⋊D9 D24⋊S3 C24⋊6D6 Dic6⋊3D6 D12.D6 D12⋊9D6 D12⋊5D6 C24⋊8D6 D40⋊S3 C40⋊8D6 D60.C22 D30.8D4 D20⋊10D6 Dic6⋊D10 D8⋊D15
D8⋊S3 is a maximal quotient of
D4.S3⋊C4 D4⋊Dic6 Dic6⋊2D4 D4.Dic6 C4⋊C4.D6 C12⋊Q8⋊C2 C4⋊C4⋊19D6 D4⋊(C4×S3) D6⋊5SD16 D6.SD16 D6⋊C8⋊11C2 C3⋊C8⋊1D4 D4⋊3D12 C3⋊C8⋊D4 D4⋊S3⋊C4 D12.D4 Dic3.Q16 C24⋊4Q8 C8⋊S3⋊C4 D6.2Q16 C2.D8⋊S3 C8⋊3D12 C24⋊C2⋊C4 D12.2Q8 Dic3⋊D8 D8⋊Dic3 (C6×D8).C2 C24⋊11D4 D12⋊D4 Dic6⋊D4 C24⋊12D4 D8⋊D9 D24⋊S3 C24⋊6D6 Dic6⋊3D6 D12.D6 D12⋊9D6 D12⋊5D6 C24⋊8D6 D40⋊S3 C40⋊8D6 D60.C22 D30.8D4 D20⋊10D6 Dic6⋊D10 D8⋊D15
Matrix representation of D8⋊S3 ►in GL4(𝔽5) generated by
0 | 4 | 3 | 3 |
1 | 4 | 3 | 0 |
0 | 2 | 0 | 4 |
0 | 0 | 1 | 1 |
4 | 2 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 3 | 0 | 1 |
0 | 2 | 1 | 0 |
3 | 0 | 0 | 2 |
0 | 0 | 1 | 1 |
4 | 4 | 4 | 3 |
1 | 0 | 0 | 1 |
4 | 0 | 0 | 2 |
0 | 1 | 1 | 1 |
0 | 0 | 4 | 3 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(5))| [0,1,0,0,4,4,2,0,3,3,0,1,3,0,4,1],[4,0,0,0,2,1,3,2,0,0,0,1,0,0,1,0],[3,0,4,1,0,0,4,0,0,1,4,0,2,1,3,1],[4,0,0,0,0,1,0,0,0,1,4,0,2,1,3,1] >;
D8⋊S3 in GAP, Magma, Sage, TeX
D_8\rtimes S_3
% in TeX
G:=Group("D8:S3");
// GroupNames label
G:=SmallGroup(96,118);
// by ID
G=gap.SmallGroup(96,118);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,362,116,297,159,69,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^3=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^5,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export