Extensions 1→N→G→Q→1 with N=C3 and Q=D6.D4

Direct product G=N×Q with N=C3 and Q=D6.D4
dρLabelID
C3×D6.D496C3xD6.D4288,665

Semidirect products G=N:Q with N=C3 and Q=D6.D4
extensionφ:Q→Aut NdρLabelID
C31(D6.D4) = C62.67C23φ: D6.D4/Dic3⋊C4C2 ⊆ Aut C348C3:1(D6.D4)288,545
C32(D6.D4) = C62.23C23φ: D6.D4/D6⋊C4C2 ⊆ Aut C348C3:2(D6.D4)288,501
C33(D6.D4) = C62.24C23φ: D6.D4/D6⋊C4C2 ⊆ Aut C348C3:3(D6.D4)288,502
C34(D6.D4) = D6.D12φ: D6.D4/D6⋊C4C2 ⊆ Aut C348C3:4(D6.D4)288,538
C35(D6.D4) = C62.238C23φ: D6.D4/C3×C4⋊C4C2 ⊆ Aut C3144C3:5(D6.D4)288,751
C36(D6.D4) = C62.20C23φ: D6.D4/S3×C2×C4C2 ⊆ Aut C348C3:6(D6.D4)288,498
C37(D6.D4) = C62.54C23φ: D6.D4/C2×D12C2 ⊆ Aut C396C3:7(D6.D4)288,532

Non-split extensions G=N.Q with N=C3 and Q=D6.D4
extensionφ:Q→Aut NdρLabelID
C3.(D6.D4) = D18.D4φ: D6.D4/C3×C4⋊C4C2 ⊆ Aut C3144C3.(D6.D4)288,104

׿
×
𝔽