metabelian, supersoluble, monomial
Aliases: D6.8D12, C62.60C23, D6⋊C4⋊16S3, C4⋊Dic3⋊6S3, (S3×C6).6D4, C6.14(S3×D4), C6.15(C2×D12), C2.18(S3×D12), (C2×C12).228D6, Dic3⋊Dic3⋊5C2, C6.54(C4○D12), C3⋊4(D6.D4), C6.D12⋊7C2, (C2×Dic3).24D6, (C22×S3).37D6, C6.11D12⋊10C2, C6.41(D4⋊2S3), (C6×C12).184C22, C6.34(Q8⋊3S3), C2.17(D12⋊S3), C2.17(D6.3D6), C3⋊1(C23.21D6), (C6×Dic3).13C22, C32⋊6(C22.D4), (C2×C4).25S32, (C3×D6⋊C4)⋊14C2, (C2×S3×Dic3)⋊12C2, (C3×C6).47(C2×D4), (C3×C4⋊Dic3)⋊12C2, C22.106(C2×S32), (S3×C2×C6).19C22, (C2×C3⋊D12).6C2, (C3×C6).36(C4○D4), (C2×C6).79(C22×S3), (C22×C3⋊S3).16C22, (C2×C3⋊Dic3).44C22, SmallGroup(288,538)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D6.D12
G = < a,b,c,d | a6=b2=c12=1, d2=a3, bab=a-1, ac=ca, ad=da, cbc-1=dbd-1=a3b, dcd-1=c-1 >
Subgroups: 762 in 173 conjugacy classes, 48 normal (44 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, C23, C32, Dic3, C12, D6, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C3×S3, C3⋊S3, C3×C6, C4×S3, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C22×S3, C22×S3, C22×C6, C22.D4, C3×Dic3, C3⋊Dic3, C3×C12, S3×C6, S3×C6, C2×C3⋊S3, C62, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, D6⋊C4, D6⋊C4, C3×C22⋊C4, C3×C4⋊C4, S3×C2×C4, C2×D12, C22×Dic3, C2×C3⋊D4, S3×Dic3, C3⋊D12, C6×Dic3, C2×C3⋊Dic3, C6×C12, S3×C2×C6, C22×C3⋊S3, C23.21D6, D6.D4, C6.D12, Dic3⋊Dic3, C3×C4⋊Dic3, C3×D6⋊C4, C6.11D12, C2×S3×Dic3, C2×C3⋊D12, D6.D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, D12, C22×S3, C22.D4, S32, C2×D12, C4○D12, S3×D4, D4⋊2S3, Q8⋊3S3, C2×S32, C23.21D6, D6.D4, D12⋊S3, S3×D12, D6.3D6, D6.D12
(1 26 9 34 5 30)(2 27 10 35 6 31)(3 28 11 36 7 32)(4 29 12 25 8 33)(13 37 17 41 21 45)(14 38 18 42 22 46)(15 39 19 43 23 47)(16 40 20 44 24 48)
(1 24)(2 41)(3 14)(4 43)(5 16)(6 45)(7 18)(8 47)(9 20)(10 37)(11 22)(12 39)(13 35)(15 25)(17 27)(19 29)(21 31)(23 33)(26 44)(28 46)(30 48)(32 38)(34 40)(36 42)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 16 34 44)(2 15 35 43)(3 14 36 42)(4 13 25 41)(5 24 26 40)(6 23 27 39)(7 22 28 38)(8 21 29 37)(9 20 30 48)(10 19 31 47)(11 18 32 46)(12 17 33 45)
G:=sub<Sym(48)| (1,26,9,34,5,30)(2,27,10,35,6,31)(3,28,11,36,7,32)(4,29,12,25,8,33)(13,37,17,41,21,45)(14,38,18,42,22,46)(15,39,19,43,23,47)(16,40,20,44,24,48), (1,24)(2,41)(3,14)(4,43)(5,16)(6,45)(7,18)(8,47)(9,20)(10,37)(11,22)(12,39)(13,35)(15,25)(17,27)(19,29)(21,31)(23,33)(26,44)(28,46)(30,48)(32,38)(34,40)(36,42), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,16,34,44)(2,15,35,43)(3,14,36,42)(4,13,25,41)(5,24,26,40)(6,23,27,39)(7,22,28,38)(8,21,29,37)(9,20,30,48)(10,19,31,47)(11,18,32,46)(12,17,33,45)>;
G:=Group( (1,26,9,34,5,30)(2,27,10,35,6,31)(3,28,11,36,7,32)(4,29,12,25,8,33)(13,37,17,41,21,45)(14,38,18,42,22,46)(15,39,19,43,23,47)(16,40,20,44,24,48), (1,24)(2,41)(3,14)(4,43)(5,16)(6,45)(7,18)(8,47)(9,20)(10,37)(11,22)(12,39)(13,35)(15,25)(17,27)(19,29)(21,31)(23,33)(26,44)(28,46)(30,48)(32,38)(34,40)(36,42), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,16,34,44)(2,15,35,43)(3,14,36,42)(4,13,25,41)(5,24,26,40)(6,23,27,39)(7,22,28,38)(8,21,29,37)(9,20,30,48)(10,19,31,47)(11,18,32,46)(12,17,33,45) );
G=PermutationGroup([[(1,26,9,34,5,30),(2,27,10,35,6,31),(3,28,11,36,7,32),(4,29,12,25,8,33),(13,37,17,41,21,45),(14,38,18,42,22,46),(15,39,19,43,23,47),(16,40,20,44,24,48)], [(1,24),(2,41),(3,14),(4,43),(5,16),(6,45),(7,18),(8,47),(9,20),(10,37),(11,22),(12,39),(13,35),(15,25),(17,27),(19,29),(21,31),(23,33),(26,44),(28,46),(30,48),(32,38),(34,40),(36,42)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,16,34,44),(2,15,35,43),(3,14,36,42),(4,13,25,41),(5,24,26,40),(6,23,27,39),(7,22,28,38),(8,21,29,37),(9,20,30,48),(10,19,31,47),(11,18,32,46),(12,17,33,45)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 6A | ··· | 6F | 6G | 6H | 6I | 6J | 6K | 12A | ··· | 12H | 12I | ··· | 12N |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 6 | 6 | 36 | 2 | 2 | 4 | 4 | 6 | 6 | 12 | 12 | 18 | 18 | 2 | ··· | 2 | 4 | 4 | 4 | 12 | 12 | 4 | ··· | 4 | 12 | ··· | 12 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | S3 | D4 | D6 | D6 | D6 | C4○D4 | D12 | C4○D12 | S32 | S3×D4 | D4⋊2S3 | Q8⋊3S3 | C2×S32 | D12⋊S3 | S3×D12 | D6.3D6 |
kernel | D6.D12 | C6.D12 | Dic3⋊Dic3 | C3×C4⋊Dic3 | C3×D6⋊C4 | C6.11D12 | C2×S3×Dic3 | C2×C3⋊D12 | C4⋊Dic3 | D6⋊C4 | S3×C6 | C2×Dic3 | C2×C12 | C22×S3 | C3×C6 | D6 | C6 | C2×C4 | C6 | C6 | C6 | C22 | C2 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 1 | 4 | 4 | 4 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 |
Matrix representation of D6.D12 ►in GL8(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
5 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
8 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 |
G:=sub<GL(8,GF(13))| [12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[5,11,0,0,0,0,0,0,12,8,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[8,2,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0],[8,0,0,0,0,0,0,0,1,5,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,1] >;
D6.D12 in GAP, Magma, Sage, TeX
D_6.D_{12}
% in TeX
G:=Group("D6.D12");
// GroupNames label
G:=SmallGroup(288,538);
// by ID
G=gap.SmallGroup(288,538);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,64,254,219,100,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^2=c^12=1,d^2=a^3,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=a^3*b,d*c*d^-1=c^-1>;
// generators/relations