Extensions 1→N→G→Q→1 with N=C4 and Q=S3×Dic3

Direct product G=N×Q with N=C4 and Q=S3×Dic3
dρLabelID
C4×S3×Dic396C4xS3xDic3288,523

Semidirect products G=N:Q with N=C4 and Q=S3×Dic3
extensionφ:Q→Aut NdρLabelID
C41(S3×Dic3) = Dic3×D12φ: S3×Dic3/C3×Dic3C2 ⊆ Aut C496C4:1(S3xDic3)288,540
C42(S3×Dic3) = D12⋊Dic3φ: S3×Dic3/C3⋊Dic3C2 ⊆ Aut C496C4:2(S3xDic3)288,546
C43(S3×Dic3) = S3×C4⋊Dic3φ: S3×Dic3/S3×C6C2 ⊆ Aut C496C4:3(S3xDic3)288,537

Non-split extensions G=N.Q with N=C4 and Q=S3×Dic3
extensionφ:Q→Aut NdρLabelID
C4.1(S3×Dic3) = C6.16D24φ: S3×Dic3/C3×Dic3C2 ⊆ Aut C496C4.1(S3xDic3)288,211
C4.2(S3×Dic3) = C6.Dic12φ: S3×Dic3/C3×Dic3C2 ⊆ Aut C496C4.2(S3xDic3)288,214
C4.3(S3×Dic3) = D122Dic3φ: S3×Dic3/C3×Dic3C2 ⊆ Aut C4484C4.3(S3xDic3)288,217
C4.4(S3×Dic3) = D12.2Dic3φ: S3×Dic3/C3×Dic3C2 ⊆ Aut C4484C4.4(S3xDic3)288,462
C4.5(S3×Dic3) = Dic3×Dic6φ: S3×Dic3/C3×Dic3C2 ⊆ Aut C496C4.5(S3xDic3)288,490
C4.6(S3×Dic3) = D123Dic3φ: S3×Dic3/C3⋊Dic3C2 ⊆ Aut C496C4.6(S3xDic3)288,210
C4.7(S3×Dic3) = Dic6⋊Dic3φ: S3×Dic3/C3⋊Dic3C2 ⊆ Aut C496C4.7(S3xDic3)288,213
C4.8(S3×Dic3) = D124Dic3φ: S3×Dic3/C3⋊Dic3C2 ⊆ Aut C4244C4.8(S3xDic3)288,216
C4.9(S3×Dic3) = D12.Dic3φ: S3×Dic3/C3⋊Dic3C2 ⊆ Aut C4484C4.9(S3xDic3)288,463
C4.10(S3×Dic3) = C62.13C23φ: S3×Dic3/C3⋊Dic3C2 ⊆ Aut C496C4.10(S3xDic3)288,491
C4.11(S3×Dic3) = C12.Dic6φ: S3×Dic3/S3×C6C2 ⊆ Aut C496C4.11(S3xDic3)288,221
C4.12(S3×Dic3) = C6.18D24φ: S3×Dic3/S3×C6C2 ⊆ Aut C496C4.12(S3xDic3)288,223
C4.13(S3×Dic3) = C12.82D12φ: S3×Dic3/S3×C6C2 ⊆ Aut C4484C4.13(S3xDic3)288,225
C4.14(S3×Dic3) = S3×C4.Dic3φ: S3×Dic3/S3×C6C2 ⊆ Aut C4484C4.14(S3xDic3)288,461
C4.15(S3×Dic3) = C62.11C23φ: S3×Dic3/S3×C6C2 ⊆ Aut C496C4.15(S3xDic3)288,489
C4.16(S3×Dic3) = S3×C3⋊C16central extension (φ=1)964C4.16(S3xDic3)288,189
C4.17(S3×Dic3) = C24.61D6central extension (φ=1)964C4.17(S3xDic3)288,191
C4.18(S3×Dic3) = Dic3×C3⋊C8central extension (φ=1)96C4.18(S3xDic3)288,200
C4.19(S3×Dic3) = C6.(S3×C8)central extension (φ=1)96C4.19(S3xDic3)288,201
C4.20(S3×Dic3) = C3⋊C8⋊Dic3central extension (φ=1)96C4.20(S3xDic3)288,202
C4.21(S3×Dic3) = C2.Dic32central extension (φ=1)96C4.21(S3xDic3)288,203
C4.22(S3×Dic3) = C2×S3×C3⋊C8central extension (φ=1)96C4.22(S3xDic3)288,460
C4.23(S3×Dic3) = C2×D6.Dic3central extension (φ=1)96C4.23(S3xDic3)288,467
C4.24(S3×Dic3) = C62.25C23central extension (φ=1)96C4.24(S3xDic3)288,503

׿
×
𝔽