Copied to
clipboard

G = D12.2Dic3order 288 = 25·32

The non-split extension by D12 of Dic3 acting through Inn(D12)

metabelian, supersoluble, monomial

Aliases: D12.2Dic3, Dic6.2Dic3, C3:C8.31D6, C3:5(C8oD12), C12.30(C4xS3), C4oD12.6S3, (C4xS3).31D6, (C3xD12).1C4, C32:4(C8oD4), C4.4(S3xDic3), (C2xC12).107D6, C62.44(C2xC4), (C3xDic6).1C4, D6.1(C2xDic3), C3:D4.2Dic3, C12.58D6:8C2, D6.Dic3:10C2, (S3xC12).8C22, C3:1(D4.Dic3), (C6xC12).66C22, C12.25(C2xDic3), C22.1(S3xDic3), C6.3(C22xDic3), (C3xC12).143C23, C12.142(C22xS3), Dic3.1(C2xDic3), C32:4C8.20C22, (C2xC3:C8):3S3, (S3xC3:C8):9C2, (C6xC3:C8):16C2, C4.89(C2xS32), (C2xC4).62S32, C6.83(S3xC2xC4), C2.5(C2xS3xDic3), (S3xC6).4(C2xC4), (C2xC6).16(C4xS3), (C3xC3:D4).1C4, (C3xC12).56(C2xC4), (C3xC4oD12).5C2, (C3xC3:C8).38C22, (C3xC6).39(C22xC4), (C3xDic3).4(C2xC4), (C2xC6).18(C2xDic3), SmallGroup(288,462)

Series: Derived Chief Lower central Upper central

C1C3xC6 — D12.2Dic3
C1C3C32C3xC6C3xC12S3xC12S3xC3:C8 — D12.2Dic3
C32C3xC6 — D12.2Dic3
C1C4C2xC4

Generators and relations for D12.2Dic3
 G = < a,b,c,d | a12=b2=1, c6=a6, d2=a6c3, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c5 >

Subgroups: 338 in 134 conjugacy classes, 60 normal (38 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, Q8, C32, Dic3, C12, C12, D6, C2xC6, C2xC6, C2xC8, M4(2), C4oD4, C3xS3, C3xC6, C3xC6, C3:C8, C3:C8, C24, Dic6, C4xS3, D12, C3:D4, C2xC12, C2xC12, C3xD4, C3xQ8, C8oD4, C3xDic3, C3xC12, S3xC6, C62, S3xC8, C8:S3, C2xC3:C8, C2xC3:C8, C4.Dic3, C2xC24, C4oD12, C3xC4oD4, C3xC3:C8, C32:4C8, C3xDic6, S3xC12, C3xD12, C3xC3:D4, C6xC12, C8oD12, D4.Dic3, S3xC3:C8, D6.Dic3, C6xC3:C8, C12.58D6, C3xC4oD12, D12.2Dic3
Quotients: C1, C2, C4, C22, S3, C2xC4, C23, Dic3, D6, C22xC4, C4xS3, C2xDic3, C22xS3, C8oD4, S32, S3xC2xC4, C22xDic3, S3xDic3, C2xS32, C8oD12, D4.Dic3, C2xS3xDic3, D12.2Dic3

Smallest permutation representation of D12.2Dic3
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 29)(2 28)(3 27)(4 26)(5 25)(6 36)(7 35)(8 34)(9 33)(10 32)(11 31)(12 30)(13 47)(14 46)(15 45)(16 44)(17 43)(18 42)(19 41)(20 40)(21 39)(22 38)(23 37)(24 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 18 23 16 21 14 19 24 17 22 15 20)(25 36 35 34 33 32 31 30 29 28 27 26)(37 44 39 46 41 48 43 38 45 40 47 42)
(1 16 10 13 7 22 4 19)(2 17 11 14 8 23 5 20)(3 18 12 15 9 24 6 21)(25 40 28 43 31 46 34 37)(26 41 29 44 32 47 35 38)(27 42 30 45 33 48 36 39)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,29)(2,28)(3,27)(4,26)(5,25)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,47)(14,46)(15,45)(16,44)(17,43)(18,42)(19,41)(20,40)(21,39)(22,38)(23,37)(24,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,18,23,16,21,14,19,24,17,22,15,20)(25,36,35,34,33,32,31,30,29,28,27,26)(37,44,39,46,41,48,43,38,45,40,47,42), (1,16,10,13,7,22,4,19)(2,17,11,14,8,23,5,20)(3,18,12,15,9,24,6,21)(25,40,28,43,31,46,34,37)(26,41,29,44,32,47,35,38)(27,42,30,45,33,48,36,39)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,29)(2,28)(3,27)(4,26)(5,25)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,47)(14,46)(15,45)(16,44)(17,43)(18,42)(19,41)(20,40)(21,39)(22,38)(23,37)(24,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,18,23,16,21,14,19,24,17,22,15,20)(25,36,35,34,33,32,31,30,29,28,27,26)(37,44,39,46,41,48,43,38,45,40,47,42), (1,16,10,13,7,22,4,19)(2,17,11,14,8,23,5,20)(3,18,12,15,9,24,6,21)(25,40,28,43,31,46,34,37)(26,41,29,44,32,47,35,38)(27,42,30,45,33,48,36,39) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,29),(2,28),(3,27),(4,26),(5,25),(6,36),(7,35),(8,34),(9,33),(10,32),(11,31),(12,30),(13,47),(14,46),(15,45),(16,44),(17,43),(18,42),(19,41),(20,40),(21,39),(22,38),(23,37),(24,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,18,23,16,21,14,19,24,17,22,15,20),(25,36,35,34,33,32,31,30,29,28,27,26),(37,44,39,46,41,48,43,38,45,40,47,42)], [(1,16,10,13,7,22,4,19),(2,17,11,14,8,23,5,20),(3,18,12,15,9,24,6,21),(25,40,28,43,31,46,34,37),(26,41,29,44,32,47,35,38),(27,42,30,45,33,48,36,39)]])

54 conjugacy classes

class 1 2A2B2C2D3A3B3C4A4B4C4D4E6A6B6C6D6E6F6G6H6I6J8A8B8C8D8E8F8G8H8I8J12A···12F12G···12K12L12M24A···24H
order12222333444446666666666888888888812···1212···12121224···24
size1126622411266222244441212333366181818182···24···412126···6

54 irreducible representations

dim111111111222222222222444444
type+++++++++-+--++-+-
imageC1C2C2C2C2C2C4C4C4S3S3D6Dic3D6Dic3Dic3D6C4xS3C4xS3C8oD4C8oD12S32S3xDic3C2xS32S3xDic3D4.Dic3D12.2Dic3
kernelD12.2Dic3S3xC3:C8D6.Dic3C6xC3:C8C12.58D6C3xC4oD12C3xDic6C3xD12C3xC3:D4C2xC3:C8C4oD12C3:C8Dic6C4xS3D12C3:D4C2xC12C12C2xC6C32C3C2xC4C4C4C22C3C1
# reps122111224112121222248111124

Matrix representation of D12.2Dic3 in GL6(F73)

1720000
100000
0046000
00462700
000010
000001
,
100000
1720000
00271900
00274600
0000720
0000072
,
7200000
0720000
0046000
0004600
000001
0000721
,
2700000
0270000
0022000
0002200
0000046
0000460

G:=sub<GL(6,GF(73))| [1,1,0,0,0,0,72,0,0,0,0,0,0,0,46,46,0,0,0,0,0,27,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,1,0,0,0,0,0,72,0,0,0,0,0,0,27,27,0,0,0,0,19,46,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,46,0,0,0,0,0,0,46,0,0,0,0,0,0,0,72,0,0,0,0,1,1],[27,0,0,0,0,0,0,27,0,0,0,0,0,0,22,0,0,0,0,0,0,22,0,0,0,0,0,0,0,46,0,0,0,0,46,0] >;

D12.2Dic3 in GAP, Magma, Sage, TeX

D_{12}._2{\rm Dic}_3
% in TeX

G:=Group("D12.2Dic3");
// GroupNames label

G:=SmallGroup(288,462);
// by ID

G=gap.SmallGroup(288,462);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,64,422,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=1,c^6=a^6,d^2=a^6*c^3,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<