Extensions 1→N→G→Q→1 with N=C6 and Q=C2xC24

Direct product G=NxQ with N=C6 and Q=C2xC24
dρLabelID
C2xC6xC24288C2xC6xC24288,826

Semidirect products G=N:Q with N=C6 and Q=C2xC24
extensionφ:Q→Aut NdρLabelID
C6:1(C2xC24) = S3xC2xC24φ: C2xC24/C24C2 ⊆ Aut C696C6:1(C2xC24)288,670
C6:2(C2xC24) = C2xC6xC3:C8φ: C2xC24/C2xC12C2 ⊆ Aut C696C6:2(C2xC24)288,691

Non-split extensions G=N.Q with N=C6 and Q=C2xC24
extensionφ:Q→Aut NdρLabelID
C6.1(C2xC24) = S3xC48φ: C2xC24/C24C2 ⊆ Aut C6962C6.1(C2xC24)288,231
C6.2(C2xC24) = C3xD6.C8φ: C2xC24/C24C2 ⊆ Aut C6962C6.2(C2xC24)288,232
C6.3(C2xC24) = Dic3xC24φ: C2xC24/C24C2 ⊆ Aut C696C6.3(C2xC24)288,247
C6.4(C2xC24) = C3xDic3:C8φ: C2xC24/C24C2 ⊆ Aut C696C6.4(C2xC24)288,248
C6.5(C2xC24) = C3xD6:C8φ: C2xC24/C24C2 ⊆ Aut C696C6.5(C2xC24)288,254
C6.6(C2xC24) = C12xC3:C8φ: C2xC24/C2xC12C2 ⊆ Aut C696C6.6(C2xC24)288,236
C6.7(C2xC24) = C3xC12:C8φ: C2xC24/C2xC12C2 ⊆ Aut C696C6.7(C2xC24)288,238
C6.8(C2xC24) = C6xC3:C16φ: C2xC24/C2xC12C2 ⊆ Aut C696C6.8(C2xC24)288,245
C6.9(C2xC24) = C3xC12.C8φ: C2xC24/C2xC12C2 ⊆ Aut C6482C6.9(C2xC24)288,246
C6.10(C2xC24) = C3xC12.55D4φ: C2xC24/C2xC12C2 ⊆ Aut C648C6.10(C2xC24)288,264
C6.11(C2xC24) = C9xC22:C8central extension (φ=1)144C6.11(C2xC24)288,48
C6.12(C2xC24) = C9xC4:C8central extension (φ=1)288C6.12(C2xC24)288,55
C6.13(C2xC24) = C9xM5(2)central extension (φ=1)1442C6.13(C2xC24)288,60
C6.14(C2xC24) = C32xC22:C8central extension (φ=1)144C6.14(C2xC24)288,316
C6.15(C2xC24) = C32xC4:C8central extension (φ=1)288C6.15(C2xC24)288,323
C6.16(C2xC24) = C32xM5(2)central extension (φ=1)144C6.16(C2xC24)288,328

׿
x
:
Z
F
o
wr
Q
<