Copied to
clipboard

G = C2xC24order 48 = 24·3

Abelian group of type [2,24]

direct product, abelian, monomial, 2-elementary

Aliases: C2xC24, SmallGroup(48,23)

Series: Derived Chief Lower central Upper central

C1 — C2xC24
C1C2C4C12C24 — C2xC24
C1 — C2xC24
C1 — C2xC24

Generators and relations for C2xC24
 G = < a,b | a2=b24=1, ab=ba >

Subgroups: 22, all normal (14 characteristic)
Quotients: C1, C2, C3, C4, C22, C6, C8, C2xC4, C12, C2xC6, C2xC8, C24, C2xC12, C2xC24

Smallest permutation representation of C2xC24
Regular action on 48 points
Generators in S48
(1 35)(2 36)(3 37)(4 38)(5 39)(6 40)(7 41)(8 42)(9 43)(10 44)(11 45)(12 46)(13 47)(14 48)(15 25)(16 26)(17 27)(18 28)(19 29)(20 30)(21 31)(22 32)(23 33)(24 34)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)

G:=sub<Sym(48)| (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,41)(8,42)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32)(23,33)(24,34), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)>;

G:=Group( (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,41)(8,42)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32)(23,33)(24,34), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48) );

G=PermutationGroup([[(1,35),(2,36),(3,37),(4,38),(5,39),(6,40),(7,41),(8,42),(9,43),(10,44),(11,45),(12,46),(13,47),(14,48),(15,25),(16,26),(17,27),(18,28),(19,29),(20,30),(21,31),(22,32),(23,33),(24,34)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)]])

C2xC24 is a maximal subgroup of
C12.C8  Dic3:C8  C24:C4  C2.Dic12  C8:Dic3  C24:1C4  C24.C4  D6:C8  C2.D24  C8oD12  C4oD24  He3:2(C2xC8)

48 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D6A···6F8A···8H12A···12H24A···24P
order12223344446···68···812···1224···24
size11111111111···11···11···11···1

48 irreducible representations

dim111111111111
type+++
imageC1C2C2C3C4C4C6C6C8C12C12C24
kernelC2xC24C24C2xC12C2xC8C12C2xC6C8C2xC4C6C4C22C2
# reps1212224284416

Matrix representation of C2xC24 in GL2(F73) generated by

720
01
,
510
017
G:=sub<GL(2,GF(73))| [72,0,0,1],[51,0,0,17] >;

C2xC24 in GAP, Magma, Sage, TeX

C_2\times C_{24}
% in TeX

G:=Group("C2xC24");
// GroupNames label

G:=SmallGroup(48,23);
// by ID

G=gap.SmallGroup(48,23);
# by ID

G:=PCGroup([5,-2,-2,-3,-2,-2,60,58]);
// Polycyclic

G:=Group<a,b|a^2=b^24=1,a*b=b*a>;
// generators/relations

Export

Subgroup lattice of C2xC24 in TeX

׿
x
:
Z
F
o
wr
Q
<