Extensions 1→N→G→Q→1 with N=C2xC24 and Q=C6

Direct product G=NxQ with N=C2xC24 and Q=C6
dρLabelID
C2xC6xC24288C2xC6xC24288,826

Semidirect products G=N:Q with N=C2xC24 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C2xC24):1C6 = C3xD6:C8φ: C6/C3C2 ⊆ Aut C2xC2496(C2xC24):1C6288,254
(C2xC24):2C6 = C3xC2.D24φ: C6/C3C2 ⊆ Aut C2xC2496(C2xC24):2C6288,255
(C2xC24):3C6 = C32xC22:C8φ: C6/C3C2 ⊆ Aut C2xC24144(C2xC24):3C6288,316
(C2xC24):4C6 = C32xD4:C4φ: C6/C3C2 ⊆ Aut C2xC24144(C2xC24):4C6288,320
(C2xC24):5C6 = C6xD24φ: C6/C3C2 ⊆ Aut C2xC2496(C2xC24):5C6288,674
(C2xC24):6C6 = C3xC4oD24φ: C6/C3C2 ⊆ Aut C2xC24482(C2xC24):6C6288,675
(C2xC24):7C6 = C6xC24:C2φ: C6/C3C2 ⊆ Aut C2xC2496(C2xC24):7C6288,673
(C2xC24):8C6 = D8xC3xC6φ: C6/C3C2 ⊆ Aut C2xC24144(C2xC24):8C6288,829
(C2xC24):9C6 = C32xC4oD8φ: C6/C3C2 ⊆ Aut C2xC24144(C2xC24):9C6288,832
(C2xC24):10C6 = S3xC2xC24φ: C6/C3C2 ⊆ Aut C2xC2496(C2xC24):10C6288,670
(C2xC24):11C6 = C6xC8:S3φ: C6/C3C2 ⊆ Aut C2xC2496(C2xC24):11C6288,671
(C2xC24):12C6 = C3xC8oD12φ: C6/C3C2 ⊆ Aut C2xC24482(C2xC24):12C6288,672
(C2xC24):13C6 = SD16xC3xC6φ: C6/C3C2 ⊆ Aut C2xC24144(C2xC24):13C6288,830
(C2xC24):14C6 = M4(2)xC3xC6φ: C6/C3C2 ⊆ Aut C2xC24144(C2xC24):14C6288,827
(C2xC24):15C6 = C32xC8oD4φ: C6/C3C2 ⊆ Aut C2xC24144(C2xC24):15C6288,828

Non-split extensions G=N.Q with N=C2xC24 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C2xC24).1C6 = C9xC22:C8φ: C6/C3C2 ⊆ Aut C2xC24144(C2xC24).1C6288,48
(C2xC24).2C6 = C9xD4:C4φ: C6/C3C2 ⊆ Aut C2xC24144(C2xC24).2C6288,52
(C2xC24).3C6 = C9xQ8:C4φ: C6/C3C2 ⊆ Aut C2xC24288(C2xC24).3C6288,53
(C2xC24).4C6 = C9xC4:C8φ: C6/C3C2 ⊆ Aut C2xC24288(C2xC24).4C6288,55
(C2xC24).5C6 = C3xDic3:C8φ: C6/C3C2 ⊆ Aut C2xC2496(C2xC24).5C6288,248
(C2xC24).6C6 = C3xC2.Dic12φ: C6/C3C2 ⊆ Aut C2xC2496(C2xC24).6C6288,250
(C2xC24).7C6 = C32xQ8:C4φ: C6/C3C2 ⊆ Aut C2xC24288(C2xC24).7C6288,321
(C2xC24).8C6 = C32xC4:C8φ: C6/C3C2 ⊆ Aut C2xC24288(C2xC24).8C6288,323
(C2xC24).9C6 = C3xC24:1C4φ: C6/C3C2 ⊆ Aut C2xC2496(C2xC24).9C6288,252
(C2xC24).10C6 = C6xDic12φ: C6/C3C2 ⊆ Aut C2xC2496(C2xC24).10C6288,676
(C2xC24).11C6 = C3xC24.C4φ: C6/C3C2 ⊆ Aut C2xC24482(C2xC24).11C6288,253
(C2xC24).12C6 = C3xC8:Dic3φ: C6/C3C2 ⊆ Aut C2xC2496(C2xC24).12C6288,251
(C2xC24).13C6 = C9xC2.D8φ: C6/C3C2 ⊆ Aut C2xC24288(C2xC24).13C6288,57
(C2xC24).14C6 = D8xC18φ: C6/C3C2 ⊆ Aut C2xC24144(C2xC24).14C6288,182
(C2xC24).15C6 = Q16xC18φ: C6/C3C2 ⊆ Aut C2xC24288(C2xC24).15C6288,184
(C2xC24).16C6 = C32xC2.D8φ: C6/C3C2 ⊆ Aut C2xC24288(C2xC24).16C6288,325
(C2xC24).17C6 = Q16xC3xC6φ: C6/C3C2 ⊆ Aut C2xC24288(C2xC24).17C6288,831
(C2xC24).18C6 = C9xC8.C4φ: C6/C3C2 ⊆ Aut C2xC241442(C2xC24).18C6288,58
(C2xC24).19C6 = C9xC4oD8φ: C6/C3C2 ⊆ Aut C2xC241442(C2xC24).19C6288,185
(C2xC24).20C6 = C32xC8.C4φ: C6/C3C2 ⊆ Aut C2xC24144(C2xC24).20C6288,326
(C2xC24).21C6 = C6xC3:C16φ: C6/C3C2 ⊆ Aut C2xC2496(C2xC24).21C6288,245
(C2xC24).22C6 = C3xC12.C8φ: C6/C3C2 ⊆ Aut C2xC24482(C2xC24).22C6288,246
(C2xC24).23C6 = Dic3xC24φ: C6/C3C2 ⊆ Aut C2xC2496(C2xC24).23C6288,247
(C2xC24).24C6 = C3xC24:C4φ: C6/C3C2 ⊆ Aut C2xC2496(C2xC24).24C6288,249
(C2xC24).25C6 = C9xC4.Q8φ: C6/C3C2 ⊆ Aut C2xC24288(C2xC24).25C6288,56
(C2xC24).26C6 = SD16xC18φ: C6/C3C2 ⊆ Aut C2xC24144(C2xC24).26C6288,183
(C2xC24).27C6 = C32xC4.Q8φ: C6/C3C2 ⊆ Aut C2xC24288(C2xC24).27C6288,324
(C2xC24).28C6 = C9xC8:C4φ: C6/C3C2 ⊆ Aut C2xC24288(C2xC24).28C6288,47
(C2xC24).29C6 = C9xM5(2)φ: C6/C3C2 ⊆ Aut C2xC241442(C2xC24).29C6288,60
(C2xC24).30C6 = M4(2)xC18φ: C6/C3C2 ⊆ Aut C2xC24144(C2xC24).30C6288,180
(C2xC24).31C6 = C9xC8oD4φ: C6/C3C2 ⊆ Aut C2xC241442(C2xC24).31C6288,181
(C2xC24).32C6 = C32xC8:C4φ: C6/C3C2 ⊆ Aut C2xC24288(C2xC24).32C6288,315
(C2xC24).33C6 = C32xM5(2)φ: C6/C3C2 ⊆ Aut C2xC24144(C2xC24).33C6288,328

׿
x
:
Z
F
o
wr
Q
<