Extensions 1→N→G→Q→1 with N=C4 and Q=S3×C12

Direct product G=N×Q with N=C4 and Q=S3×C12
dρLabelID
S3×C4×C1296S3xC4xC12288,642

Semidirect products G=N:Q with N=C4 and Q=S3×C12
extensionφ:Q→Aut NdρLabelID
C41(S3×C12) = C3×Dic35D4φ: S3×C12/C3×Dic3C2 ⊆ Aut C496C4:1(S3xC12)288,664
C42(S3×C12) = C12×D12φ: S3×C12/C3×C12C2 ⊆ Aut C496C4:2(S3xC12)288,644
C43(S3×C12) = C3×S3×C4⋊C4φ: S3×C12/S3×C6C2 ⊆ Aut C496C4:3(S3xC12)288,662

Non-split extensions G=N.Q with N=C4 and Q=S3×C12
extensionφ:Q→Aut NdρLabelID
C4.1(S3×C12) = C3×C6.D8φ: S3×C12/C3×Dic3C2 ⊆ Aut C496C4.1(S3xC12)288,243
C4.2(S3×C12) = C3×C6.SD16φ: S3×C12/C3×Dic3C2 ⊆ Aut C496C4.2(S3xC12)288,244
C4.3(S3×C12) = C3×D12⋊C4φ: S3×C12/C3×Dic3C2 ⊆ Aut C4484C4.3(S3xC12)288,259
C4.4(S3×C12) = C3×Dic6⋊C4φ: S3×C12/C3×Dic3C2 ⊆ Aut C496C4.4(S3xC12)288,658
C4.5(S3×C12) = C3×D12.C4φ: S3×C12/C3×Dic3C2 ⊆ Aut C4484C4.5(S3xC12)288,678
C4.6(S3×C12) = C3×C424S3φ: S3×C12/C3×C12C2 ⊆ Aut C4242C4.6(S3xC12)288,239
C4.7(S3×C12) = C3×C2.Dic12φ: S3×C12/C3×C12C2 ⊆ Aut C496C4.7(S3xC12)288,250
C4.8(S3×C12) = C3×C2.D24φ: S3×C12/C3×C12C2 ⊆ Aut C496C4.8(S3xC12)288,255
C4.9(S3×C12) = C12×Dic6φ: S3×C12/C3×C12C2 ⊆ Aut C496C4.9(S3xC12)288,639
C4.10(S3×C12) = C3×C8○D12φ: S3×C12/C3×C12C2 ⊆ Aut C4482C4.10(S3xC12)288,672
C4.11(S3×C12) = C3×C6.Q16φ: S3×C12/S3×C6C2 ⊆ Aut C496C4.11(S3xC12)288,241
C4.12(S3×C12) = C3×C12.Q8φ: S3×C12/S3×C6C2 ⊆ Aut C496C4.12(S3xC12)288,242
C4.13(S3×C12) = C3×C12.53D4φ: S3×C12/S3×C6C2 ⊆ Aut C4484C4.13(S3xC12)288,256
C4.14(S3×C12) = C3×C4⋊C47S3φ: S3×C12/S3×C6C2 ⊆ Aut C496C4.14(S3xC12)288,663
C4.15(S3×C12) = C3×S3×M4(2)φ: S3×C12/S3×C6C2 ⊆ Aut C4484C4.15(S3xC12)288,677
C4.16(S3×C12) = S3×C48central extension (φ=1)962C4.16(S3xC12)288,231
C4.17(S3×C12) = C3×D6.C8central extension (φ=1)962C4.17(S3xC12)288,232
C4.18(S3×C12) = C12×C3⋊C8central extension (φ=1)96C4.18(S3xC12)288,236
C4.19(S3×C12) = C3×C42.S3central extension (φ=1)96C4.19(S3xC12)288,237
C4.20(S3×C12) = Dic3×C24central extension (φ=1)96C4.20(S3xC12)288,247
C4.21(S3×C12) = C3×C24⋊C4central extension (φ=1)96C4.21(S3xC12)288,249
C4.22(S3×C12) = C3×C422S3central extension (φ=1)96C4.22(S3xC12)288,643
C4.23(S3×C12) = S3×C2×C24central extension (φ=1)96C4.23(S3xC12)288,670
C4.24(S3×C12) = C6×C8⋊S3central extension (φ=1)96C4.24(S3xC12)288,671

׿
×
𝔽