direct product, metabelian, supersoluble, monomial
Aliases: C3xD12:C4, D12:4C12, Dic6:4C12, C62.34D4, C32:10C4wrC2, (C3xD12):6C4, C4.3(S3xC12), C12.51(C4xS3), C12.6(C2xC12), (C3xDic6):6C4, C4oD12.2C6, (C4xDic3):1C6, C12.63(C3xD4), (C2xC6).45D12, C6.51(D6:C4), (Dic3xC12):6C2, (C3xC12).165D4, (C2xC12).316D6, (C3xM4(2)):8C6, M4(2):4(C3xS3), (C3xM4(2)):8S3, C22.3(C3xD12), (C6xC12).46C22, C12.146(C3:D4), (C32xM4(2)):12C2, C3:2(C3xC4wrC2), (C2xC6).2(C3xD4), (C2xC4).37(S3xC6), C2.11(C3xD6:C4), C4.29(C3xC3:D4), (C2xC12).16(C2xC6), (C3xC12).42(C2xC4), (C3xC4oD12).4C2, C6.10(C3xC22:C4), (C3xC6).50(C22:C4), SmallGroup(288,259)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3xD12:C4
G = < a,b,c,d | a3=b12=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b5, dcd-1=b7c >
Subgroups: 250 in 98 conjugacy classes, 38 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, Q8, C32, Dic3, C12, C12, D6, C2xC6, C2xC6, C42, M4(2), C4oD4, C3xS3, C3xC6, C3xC6, C24, Dic6, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C3xQ8, C4wrC2, C3xDic3, C3xC12, S3xC6, C62, C4xDic3, C4xC12, C3xM4(2), C3xM4(2), C4oD12, C3xC4oD4, C3xC24, C3xDic6, S3xC12, C3xD12, C6xDic3, C3xC3:D4, C6xC12, D12:C4, C3xC4wrC2, Dic3xC12, C32xM4(2), C3xC4oD12, C3xD12:C4
Quotients: C1, C2, C3, C4, C22, S3, C6, C2xC4, D4, C12, D6, C2xC6, C22:C4, C3xS3, C4xS3, D12, C3:D4, C2xC12, C3xD4, C4wrC2, S3xC6, D6:C4, C3xC22:C4, S3xC12, C3xD12, C3xC3:D4, D12:C4, C3xC4wrC2, C3xD6:C4, C3xD12:C4
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 21 17)(14 22 18)(15 23 19)(16 24 20)(25 29 33)(26 30 34)(27 31 35)(28 32 36)(37 41 45)(38 42 46)(39 43 47)(40 44 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 27)(2 26)(3 25)(4 36)(5 35)(6 34)(7 33)(8 32)(9 31)(10 30)(11 29)(12 28)(13 39)(14 38)(15 37)(16 48)(17 47)(18 46)(19 45)(20 44)(21 43)(22 42)(23 41)(24 40)
(1 46 7 40)(2 39 8 45)(3 44 9 38)(4 37 10 43)(5 42 11 48)(6 47 12 41)(13 31)(14 36)(15 29)(16 34)(17 27)(18 32)(19 25)(20 30)(21 35)(22 28)(23 33)(24 26)
G:=sub<Sym(48)| (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,27)(2,26)(3,25)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,39)(14,38)(15,37)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40), (1,46,7,40)(2,39,8,45)(3,44,9,38)(4,37,10,43)(5,42,11,48)(6,47,12,41)(13,31)(14,36)(15,29)(16,34)(17,27)(18,32)(19,25)(20,30)(21,35)(22,28)(23,33)(24,26)>;
G:=Group( (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,27)(2,26)(3,25)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,39)(14,38)(15,37)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40), (1,46,7,40)(2,39,8,45)(3,44,9,38)(4,37,10,43)(5,42,11,48)(6,47,12,41)(13,31)(14,36)(15,29)(16,34)(17,27)(18,32)(19,25)(20,30)(21,35)(22,28)(23,33)(24,26) );
G=PermutationGroup([[(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,21,17),(14,22,18),(15,23,19),(16,24,20),(25,29,33),(26,30,34),(27,31,35),(28,32,36),(37,41,45),(38,42,46),(39,43,47),(40,44,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,27),(2,26),(3,25),(4,36),(5,35),(6,34),(7,33),(8,32),(9,31),(10,30),(11,29),(12,28),(13,39),(14,38),(15,37),(16,48),(17,47),(18,46),(19,45),(20,44),(21,43),(22,42),(23,41),(24,40)], [(1,46,7,40),(2,39,8,45),(3,44,9,38),(4,37,10,43),(5,42,11,48),(6,47,12,41),(13,31),(14,36),(15,29),(16,34),(17,27),(18,32),(19,25),(20,30),(21,35),(22,28),(23,33),(24,26)]])
72 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | 6B | 6C | ··· | 6G | 6H | 6I | 6J | 6K | 6L | 8A | 8B | 12A | 12B | 12C | 12D | 12E | ··· | 12L | 12M | 12N | 12O | 12P | ··· | 12W | 12X | 12Y | 24A | ··· | 24P |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 2 | 12 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 6 | 6 | 6 | 6 | 12 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 12 | 12 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 6 | ··· | 6 | 12 | 12 | 4 | ··· | 4 |
72 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | |||||||||||||||||||||
image | C1 | C2 | C2 | C2 | C3 | C4 | C4 | C6 | C6 | C6 | C12 | C12 | S3 | D4 | D4 | D6 | C3xS3 | C4xS3 | C3:D4 | C3xD4 | D12 | C3xD4 | C4wrC2 | S3xC6 | S3xC12 | C3xC3:D4 | C3xD12 | C3xC4wrC2 | D12:C4 | C3xD12:C4 |
kernel | C3xD12:C4 | Dic3xC12 | C32xM4(2) | C3xC4oD12 | D12:C4 | C3xDic6 | C3xD12 | C4xDic3 | C3xM4(2) | C4oD12 | Dic6 | D12 | C3xM4(2) | C3xC12 | C62 | C2xC12 | M4(2) | C12 | C12 | C12 | C2xC6 | C2xC6 | C32 | C2xC4 | C4 | C4 | C22 | C3 | C3 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 4 | 4 | 4 | 8 | 2 | 4 |
Matrix representation of C3xD12:C4 ►in GL4(F73) generated by
8 | 0 | 0 | 0 |
0 | 8 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
9 | 0 | 0 | 0 |
0 | 65 | 0 | 0 |
0 | 0 | 46 | 44 |
0 | 0 | 0 | 27 |
0 | 65 | 0 | 0 |
9 | 0 | 0 | 0 |
0 | 0 | 46 | 44 |
0 | 0 | 10 | 27 |
0 | 46 | 0 | 0 |
27 | 0 | 0 | 0 |
0 | 0 | 27 | 41 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(73))| [8,0,0,0,0,8,0,0,0,0,1,0,0,0,0,1],[9,0,0,0,0,65,0,0,0,0,46,0,0,0,44,27],[0,9,0,0,65,0,0,0,0,0,46,10,0,0,44,27],[0,27,0,0,46,0,0,0,0,0,27,0,0,0,41,1] >;
C3xD12:C4 in GAP, Magma, Sage, TeX
C_3\times D_{12}\rtimes C_4
% in TeX
G:=Group("C3xD12:C4");
// GroupNames label
G:=SmallGroup(288,259);
// by ID
G=gap.SmallGroup(288,259);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-3,365,92,136,2524,1271,102,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^12=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^5,d*c*d^-1=b^7*c>;
// generators/relations