Copied to
clipboard

G = C3xD12:C4order 288 = 25·32

Direct product of C3 and D12:C4

direct product, metabelian, supersoluble, monomial

Aliases: C3xD12:C4, D12:4C12, Dic6:4C12, C62.34D4, C32:10C4wrC2, (C3xD12):6C4, C4.3(S3xC12), C12.51(C4xS3), C12.6(C2xC12), (C3xDic6):6C4, C4oD12.2C6, (C4xDic3):1C6, C12.63(C3xD4), (C2xC6).45D12, C6.51(D6:C4), (Dic3xC12):6C2, (C3xC12).165D4, (C2xC12).316D6, (C3xM4(2)):8C6, M4(2):4(C3xS3), (C3xM4(2)):8S3, C22.3(C3xD12), (C6xC12).46C22, C12.146(C3:D4), (C32xM4(2)):12C2, C3:2(C3xC4wrC2), (C2xC6).2(C3xD4), (C2xC4).37(S3xC6), C2.11(C3xD6:C4), C4.29(C3xC3:D4), (C2xC12).16(C2xC6), (C3xC12).42(C2xC4), (C3xC4oD12).4C2, C6.10(C3xC22:C4), (C3xC6).50(C22:C4), SmallGroup(288,259)

Series: Derived Chief Lower central Upper central

C1C12 — C3xD12:C4
C1C3C6C12C2xC12C6xC12C3xC4oD12 — C3xD12:C4
C3C6C12 — C3xD12:C4
C1C12C2xC12C3xM4(2)

Generators and relations for C3xD12:C4
 G = < a,b,c,d | a3=b12=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b5, dcd-1=b7c >

Subgroups: 250 in 98 conjugacy classes, 38 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, Q8, C32, Dic3, C12, C12, D6, C2xC6, C2xC6, C42, M4(2), C4oD4, C3xS3, C3xC6, C3xC6, C24, Dic6, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C3xQ8, C4wrC2, C3xDic3, C3xC12, S3xC6, C62, C4xDic3, C4xC12, C3xM4(2), C3xM4(2), C4oD12, C3xC4oD4, C3xC24, C3xDic6, S3xC12, C3xD12, C6xDic3, C3xC3:D4, C6xC12, D12:C4, C3xC4wrC2, Dic3xC12, C32xM4(2), C3xC4oD12, C3xD12:C4
Quotients: C1, C2, C3, C4, C22, S3, C6, C2xC4, D4, C12, D6, C2xC6, C22:C4, C3xS3, C4xS3, D12, C3:D4, C2xC12, C3xD4, C4wrC2, S3xC6, D6:C4, C3xC22:C4, S3xC12, C3xD12, C3xC3:D4, D12:C4, C3xC4wrC2, C3xD6:C4, C3xD12:C4

Smallest permutation representation of C3xD12:C4
On 48 points
Generators in S48
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 21 17)(14 22 18)(15 23 19)(16 24 20)(25 29 33)(26 30 34)(27 31 35)(28 32 36)(37 41 45)(38 42 46)(39 43 47)(40 44 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 27)(2 26)(3 25)(4 36)(5 35)(6 34)(7 33)(8 32)(9 31)(10 30)(11 29)(12 28)(13 39)(14 38)(15 37)(16 48)(17 47)(18 46)(19 45)(20 44)(21 43)(22 42)(23 41)(24 40)
(1 46 7 40)(2 39 8 45)(3 44 9 38)(4 37 10 43)(5 42 11 48)(6 47 12 41)(13 31)(14 36)(15 29)(16 34)(17 27)(18 32)(19 25)(20 30)(21 35)(22 28)(23 33)(24 26)

G:=sub<Sym(48)| (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,27)(2,26)(3,25)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,39)(14,38)(15,37)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40), (1,46,7,40)(2,39,8,45)(3,44,9,38)(4,37,10,43)(5,42,11,48)(6,47,12,41)(13,31)(14,36)(15,29)(16,34)(17,27)(18,32)(19,25)(20,30)(21,35)(22,28)(23,33)(24,26)>;

G:=Group( (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,27)(2,26)(3,25)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,39)(14,38)(15,37)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40), (1,46,7,40)(2,39,8,45)(3,44,9,38)(4,37,10,43)(5,42,11,48)(6,47,12,41)(13,31)(14,36)(15,29)(16,34)(17,27)(18,32)(19,25)(20,30)(21,35)(22,28)(23,33)(24,26) );

G=PermutationGroup([[(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,21,17),(14,22,18),(15,23,19),(16,24,20),(25,29,33),(26,30,34),(27,31,35),(28,32,36),(37,41,45),(38,42,46),(39,43,47),(40,44,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,27),(2,26),(3,25),(4,36),(5,35),(6,34),(7,33),(8,32),(9,31),(10,30),(11,29),(12,28),(13,39),(14,38),(15,37),(16,48),(17,47),(18,46),(19,45),(20,44),(21,43),(22,42),(23,41),(24,40)], [(1,46,7,40),(2,39,8,45),(3,44,9,38),(4,37,10,43),(5,42,11,48),(6,47,12,41),(13,31),(14,36),(15,29),(16,34),(17,27),(18,32),(19,25),(20,30),(21,35),(22,28),(23,33),(24,26)]])

72 conjugacy classes

class 1 2A2B2C3A3B3C3D3E4A4B4C4D4E4F4G4H6A6B6C···6G6H6I6J6K6L8A8B12A12B12C12D12E···12L12M12N12O12P···12W12X12Y24A···24P
order12223333344444444666···666666881212121212···1212121212···12121224···24
size1121211222112666612112···244412124411112···24446···612124···4

72 irreducible representations

dim111111111111222222222222222244
type+++++++++
imageC1C2C2C2C3C4C4C6C6C6C12C12S3D4D4D6C3xS3C4xS3C3:D4C3xD4D12C3xD4C4wrC2S3xC6S3xC12C3xC3:D4C3xD12C3xC4wrC2D12:C4C3xD12:C4
kernelC3xD12:C4Dic3xC12C32xM4(2)C3xC4oD12D12:C4C3xDic6C3xD12C4xDic3C3xM4(2)C4oD12Dic6D12C3xM4(2)C3xC12C62C2xC12M4(2)C12C12C12C2xC6C2xC6C32C2xC4C4C4C22C3C3C1
# reps111122222244111122222242444824

Matrix representation of C3xD12:C4 in GL4(F73) generated by

8000
0800
0010
0001
,
9000
06500
004644
00027
,
06500
9000
004644
001027
,
04600
27000
002741
0001
G:=sub<GL(4,GF(73))| [8,0,0,0,0,8,0,0,0,0,1,0,0,0,0,1],[9,0,0,0,0,65,0,0,0,0,46,0,0,0,44,27],[0,9,0,0,65,0,0,0,0,0,46,10,0,0,44,27],[0,27,0,0,46,0,0,0,0,0,27,0,0,0,41,1] >;

C3xD12:C4 in GAP, Magma, Sage, TeX

C_3\times D_{12}\rtimes C_4
% in TeX

G:=Group("C3xD12:C4");
// GroupNames label

G:=SmallGroup(288,259);
// by ID

G=gap.SmallGroup(288,259);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-3,365,92,136,2524,1271,102,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^12=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^5,d*c*d^-1=b^7*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<