Extensions 1→N→G→Q→1 with N=C3xC48 and Q=C2

Direct product G=NxQ with N=C3xC48 and Q=C2
dρLabelID
C6xC48288C6xC48288,327

Semidirect products G=N:Q with N=C3xC48 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C3xC48):1C2 = C32:5D16φ: C2/C1C2 ⊆ Aut C3xC48144(C3xC48):1C2288,274
(C3xC48):2C2 = C3xD48φ: C2/C1C2 ⊆ Aut C3xC48962(C3xC48):2C2288,233
(C3xC48):3C2 = C6.D24φ: C2/C1C2 ⊆ Aut C3xC48144(C3xC48):3C2288,275
(C3xC48):4C2 = C3xC48:C2φ: C2/C1C2 ⊆ Aut C3xC48962(C3xC48):4C2288,234
(C3xC48):5C2 = C32xD16φ: C2/C1C2 ⊆ Aut C3xC48144(C3xC48):5C2288,329
(C3xC48):6C2 = C32xSD32φ: C2/C1C2 ⊆ Aut C3xC48144(C3xC48):6C2288,330
(C3xC48):7C2 = S3xC48φ: C2/C1C2 ⊆ Aut C3xC48962(C3xC48):7C2288,231
(C3xC48):8C2 = C16xC3:S3φ: C2/C1C2 ⊆ Aut C3xC48144(C3xC48):8C2288,272
(C3xC48):9C2 = C48:S3φ: C2/C1C2 ⊆ Aut C3xC48144(C3xC48):9C2288,273
(C3xC48):10C2 = C3xD6.C8φ: C2/C1C2 ⊆ Aut C3xC48962(C3xC48):10C2288,232
(C3xC48):11C2 = C32xM5(2)φ: C2/C1C2 ⊆ Aut C3xC48144(C3xC48):11C2288,328

Non-split extensions G=N.Q with N=C3xC48 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C3xC48).1C2 = C32:5Q32φ: C2/C1C2 ⊆ Aut C3xC48288(C3xC48).1C2288,276
(C3xC48).2C2 = C3xDic24φ: C2/C1C2 ⊆ Aut C3xC48962(C3xC48).2C2288,235
(C3xC48).3C2 = C32xQ32φ: C2/C1C2 ⊆ Aut C3xC48288(C3xC48).3C2288,331
(C3xC48).4C2 = C3xC3:C32φ: C2/C1C2 ⊆ Aut C3xC48962(C3xC48).4C2288,64
(C3xC48).5C2 = C48.S3φ: C2/C1C2 ⊆ Aut C3xC48288(C3xC48).5C2288,65

׿
x
:
Z
F
o
wr
Q
<