direct product, metacyclic, supersoluble, monomial
Aliases: C3×Dic24, C48.1C6, C48.5S3, C32⋊4Q32, C6.21D24, C24.81D6, C12.64D12, Dic12.1C6, C16.(C3×S3), C3⋊1(C3×Q32), C6.3(C3×D8), C8.15(S3×C6), (C3×C48).2C2, C2.5(C3×D24), (C3×C6).20D8, C4.3(C3×D12), C24.18(C2×C6), C12.26(C3×D4), (C3×C12).128D4, (C3×C24).56C22, (C3×Dic12).1C2, SmallGroup(288,235)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×Dic24
G = < a,b,c | a3=b48=1, c2=b24, ab=ba, ac=ca, cbc-1=b-1 >
(1 33 17)(2 34 18)(3 35 19)(4 36 20)(5 37 21)(6 38 22)(7 39 23)(8 40 24)(9 41 25)(10 42 26)(11 43 27)(12 44 28)(13 45 29)(14 46 30)(15 47 31)(16 48 32)(49 65 81)(50 66 82)(51 67 83)(52 68 84)(53 69 85)(54 70 86)(55 71 87)(56 72 88)(57 73 89)(58 74 90)(59 75 91)(60 76 92)(61 77 93)(62 78 94)(63 79 95)(64 80 96)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 70 25 94)(2 69 26 93)(3 68 27 92)(4 67 28 91)(5 66 29 90)(6 65 30 89)(7 64 31 88)(8 63 32 87)(9 62 33 86)(10 61 34 85)(11 60 35 84)(12 59 36 83)(13 58 37 82)(14 57 38 81)(15 56 39 80)(16 55 40 79)(17 54 41 78)(18 53 42 77)(19 52 43 76)(20 51 44 75)(21 50 45 74)(22 49 46 73)(23 96 47 72)(24 95 48 71)
G:=sub<Sym(96)| (1,33,17)(2,34,18)(3,35,19)(4,36,20)(5,37,21)(6,38,22)(7,39,23)(8,40,24)(9,41,25)(10,42,26)(11,43,27)(12,44,28)(13,45,29)(14,46,30)(15,47,31)(16,48,32)(49,65,81)(50,66,82)(51,67,83)(52,68,84)(53,69,85)(54,70,86)(55,71,87)(56,72,88)(57,73,89)(58,74,90)(59,75,91)(60,76,92)(61,77,93)(62,78,94)(63,79,95)(64,80,96), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,70,25,94)(2,69,26,93)(3,68,27,92)(4,67,28,91)(5,66,29,90)(6,65,30,89)(7,64,31,88)(8,63,32,87)(9,62,33,86)(10,61,34,85)(11,60,35,84)(12,59,36,83)(13,58,37,82)(14,57,38,81)(15,56,39,80)(16,55,40,79)(17,54,41,78)(18,53,42,77)(19,52,43,76)(20,51,44,75)(21,50,45,74)(22,49,46,73)(23,96,47,72)(24,95,48,71)>;
G:=Group( (1,33,17)(2,34,18)(3,35,19)(4,36,20)(5,37,21)(6,38,22)(7,39,23)(8,40,24)(9,41,25)(10,42,26)(11,43,27)(12,44,28)(13,45,29)(14,46,30)(15,47,31)(16,48,32)(49,65,81)(50,66,82)(51,67,83)(52,68,84)(53,69,85)(54,70,86)(55,71,87)(56,72,88)(57,73,89)(58,74,90)(59,75,91)(60,76,92)(61,77,93)(62,78,94)(63,79,95)(64,80,96), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,70,25,94)(2,69,26,93)(3,68,27,92)(4,67,28,91)(5,66,29,90)(6,65,30,89)(7,64,31,88)(8,63,32,87)(9,62,33,86)(10,61,34,85)(11,60,35,84)(12,59,36,83)(13,58,37,82)(14,57,38,81)(15,56,39,80)(16,55,40,79)(17,54,41,78)(18,53,42,77)(19,52,43,76)(20,51,44,75)(21,50,45,74)(22,49,46,73)(23,96,47,72)(24,95,48,71) );
G=PermutationGroup([[(1,33,17),(2,34,18),(3,35,19),(4,36,20),(5,37,21),(6,38,22),(7,39,23),(8,40,24),(9,41,25),(10,42,26),(11,43,27),(12,44,28),(13,45,29),(14,46,30),(15,47,31),(16,48,32),(49,65,81),(50,66,82),(51,67,83),(52,68,84),(53,69,85),(54,70,86),(55,71,87),(56,72,88),(57,73,89),(58,74,90),(59,75,91),(60,76,92),(61,77,93),(62,78,94),(63,79,95),(64,80,96)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,70,25,94),(2,69,26,93),(3,68,27,92),(4,67,28,91),(5,66,29,90),(6,65,30,89),(7,64,31,88),(8,63,32,87),(9,62,33,86),(10,61,34,85),(11,60,35,84),(12,59,36,83),(13,58,37,82),(14,57,38,81),(15,56,39,80),(16,55,40,79),(17,54,41,78),(18,53,42,77),(19,52,43,76),(20,51,44,75),(21,50,45,74),(22,49,46,73),(23,96,47,72),(24,95,48,71)]])
81 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | 8A | 8B | 12A | ··· | 12H | 12I | 12J | 12K | 12L | 16A | 16B | 16C | 16D | 24A | ··· | 24P | 48A | ··· | 48AF |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 16 | 16 | 16 | 16 | 24 | ··· | 24 | 48 | ··· | 48 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 24 | 24 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 24 | 24 | 24 | 24 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
81 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | - | + | - | |||||||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | S3 | D4 | D6 | D8 | C3×S3 | D12 | C3×D4 | Q32 | S3×C6 | D24 | C3×D8 | C3×D12 | Dic24 | C3×Q32 | C3×D24 | C3×Dic24 |
kernel | C3×Dic24 | C3×C48 | C3×Dic12 | Dic24 | C48 | Dic12 | C48 | C3×C12 | C24 | C3×C6 | C16 | C12 | C12 | C32 | C8 | C6 | C6 | C4 | C3 | C3 | C2 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 4 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 2 | 4 | 4 | 4 | 8 | 8 | 8 | 16 |
Matrix representation of C3×Dic24 ►in GL2(𝔽97) generated by
35 | 0 |
0 | 35 |
31 | 0 |
0 | 72 |
0 | 1 |
96 | 0 |
G:=sub<GL(2,GF(97))| [35,0,0,35],[31,0,0,72],[0,96,1,0] >;
C3×Dic24 in GAP, Magma, Sage, TeX
C_3\times {\rm Dic}_{24}
% in TeX
G:=Group("C3xDic24");
// GroupNames label
G:=SmallGroup(288,235);
// by ID
G=gap.SmallGroup(288,235);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-3,336,197,260,1011,192,2524,102,9414]);
// Polycyclic
G:=Group<a,b,c|a^3=b^48=1,c^2=b^24,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export