Extensions 1→N→G→Q→1 with N=C4xC3:S3 and Q=C4

Direct product G=NxQ with N=C4xC3:S3 and Q=C4
dρLabelID
C42xC3:S3144C4^2xC3:S3288,728

Semidirect products G=N:Q with N=C4xC3:S3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C4xC3:S3):1C4 = C62.19C23φ: C4/C2C2 ⊆ Out C4xC3:S348(C4xC3:S3):1C4288,497
(C4xC3:S3):2C4 = C62.70C23φ: C4/C2C2 ⊆ Out C4xC3:S348(C4xC3:S3):2C4288,548
(C4xC3:S3):3C4 = C4:C4xC3:S3φ: C4/C2C2 ⊆ Out C4xC3:S3144(C4xC3:S3):3C4288,748
(C4xC3:S3):4C4 = C62.236C23φ: C4/C2C2 ⊆ Out C4xC3:S3144(C4xC3:S3):4C4288,749
(C4xC3:S3):5C4 = C62.44C23φ: C4/C2C2 ⊆ Out C4xC3:S348(C4xC3:S3):5C4288,522
(C4xC3:S3):6C4 = C4xC6.D6φ: C4/C2C2 ⊆ Out C4xC3:S348(C4xC3:S3):6C4288,530
(C4xC3:S3):7C4 = C122:16C2φ: C4/C2C2 ⊆ Out C4xC3:S3144(C4xC3:S3):7C4288,729
(C4xC3:S3):8C4 = C2xC4xC32:C4φ: C4/C2C2 ⊆ Out C4xC3:S348(C4xC3:S3):8C4288,932
(C4xC3:S3):9C4 = C2xC4:(C32:C4)φ: C4/C2C2 ⊆ Out C4xC3:S348(C4xC3:S3):9C4288,933
(C4xC3:S3):10C4 = (C6xC12):5C4φ: C4/C2C2 ⊆ Out C4xC3:S3244(C4xC3:S3):10C4288,934

Non-split extensions G=N.Q with N=C4xC3:S3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C4xC3:S3).1C4 = C4.3F9φ: C4/C1C4 ⊆ Out C4xC3:S3488(C4xC3:S3).1C4288,861
(C4xC3:S3).2C4 = C4.F9φ: C4/C1C4 ⊆ Out C4xC3:S3488(C4xC3:S3).2C4288,862
(C4xC3:S3).3C4 = C4xF9φ: C4/C1C4 ⊆ Out C4xC3:S3368(C4xC3:S3).3C4288,863
(C4xC3:S3).4C4 = C4:F9φ: C4/C1C4 ⊆ Out C4xC3:S3368(C4xC3:S3).4C4288,864
(C4xC3:S3).5C4 = C3:C8:20D6φ: C4/C2C2 ⊆ Out C4xC3:S3244(C4xC3:S3).5C4288,466
(C4xC3:S3).6C4 = M4(2)xC3:S3φ: C4/C2C2 ⊆ Out C4xC3:S372(C4xC3:S3).6C4288,763
(C4xC3:S3).7C4 = C24.60D6φ: C4/C2C2 ⊆ Out C4xC3:S3484(C4xC3:S3).7C4288,190
(C4xC3:S3).8C4 = C24.62D6φ: C4/C2C2 ⊆ Out C4xC3:S3484(C4xC3:S3).8C4288,192
(C4xC3:S3).9C4 = C48:S3φ: C4/C2C2 ⊆ Out C4xC3:S3144(C4xC3:S3).9C4288,273
(C4xC3:S3).10C4 = C3:S3:3C16φ: C4/C2C2 ⊆ Out C4xC3:S3484(C4xC3:S3).10C4288,412
(C4xC3:S3).11C4 = C32:3M5(2)φ: C4/C2C2 ⊆ Out C4xC3:S3484(C4xC3:S3).11C4288,413
(C4xC3:S3).12C4 = C2xC12.29D6φ: C4/C2C2 ⊆ Out C4xC3:S348(C4xC3:S3).12C4288,464
(C4xC3:S3).13C4 = C2xC12.31D6φ: C4/C2C2 ⊆ Out C4xC3:S348(C4xC3:S3).13C4288,468
(C4xC3:S3).14C4 = C2xC24:S3φ: C4/C2C2 ⊆ Out C4xC3:S3144(C4xC3:S3).14C4288,757
(C4xC3:S3).15C4 = C2xC3:S3:3C8φ: C4/C2C2 ⊆ Out C4xC3:S348(C4xC3:S3).15C4288,929
(C4xC3:S3).16C4 = C2xC32:M4(2)φ: C4/C2C2 ⊆ Out C4xC3:S348(C4xC3:S3).16C4288,930
(C4xC3:S3).17C4 = C3:S3:M4(2)φ: C4/C2C2 ⊆ Out C4xC3:S3244(C4xC3:S3).17C4288,931
(C4xC3:S3).18C4 = C16xC3:S3φ: trivial image144(C4xC3:S3).18C4288,272
(C4xC3:S3).19C4 = C2xC8xC3:S3φ: trivial image144(C4xC3:S3).19C4288,756

׿
x
:
Z
F
o
wr
Q
<