Copied to
clipboard

G = C24.60D6order 288 = 25·32

13rd non-split extension by C24 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, A-group

Aliases: C24.60D6, C3:C16:6S3, C8.21S32, C3:S3:2C16, C3:1(S3xC16), C6.1(S3xC8), C32:5(C2xC16), C12.43(C4xS3), C3:Dic3.3C8, C32:4C8.4C4, (C3xC24).42C22, C4.11(C6.D6), C2.1(C12.29D6), (C3xC3:C16):8C2, (C8xC3:S3).3C2, (C4xC3:S3).7C4, (C2xC3:S3).3C8, (C3xC6).13(C2xC8), (C3xC12).78(C2xC4), SmallGroup(288,190)

Series: Derived Chief Lower central Upper central

C1C32 — C24.60D6
C1C3C32C3xC6C3xC12C3xC24C3xC3:C16 — C24.60D6
C32 — C24.60D6
C1C8

Generators and relations for C24.60D6
 G = < a,b,c | a24=1, b6=a3, c2=a18, bab-1=cac-1=a17, cbc-1=a6b5 >

Subgroups: 210 in 67 conjugacy classes, 28 normal (14 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2xC4, C32, Dic3, C12, C12, D6, C16, C2xC8, C3:S3, C3xC6, C3:C8, C24, C24, C4xS3, C2xC16, C3:Dic3, C3xC12, C2xC3:S3, C3:C16, C48, S3xC8, C32:4C8, C3xC24, C4xC3:S3, S3xC16, C3xC3:C16, C8xC3:S3, C24.60D6
Quotients: C1, C2, C4, C22, S3, C8, C2xC4, D6, C16, C2xC8, C4xS3, C2xC16, S32, S3xC8, C6.D6, S3xC16, C12.29D6, C24.60D6

Smallest permutation representation of C24.60D6
On 48 points
Generators in S48
(1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47)(2 36 22 8 42 28 14 48 34 20 6 40 26 12 46 32 18 4 38 24 10 44 30 16)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 3 37 39 25 27 13 15)(2 20 38 8 26 44 14 32)(4 6 40 42 28 30 16 18)(5 23 41 11 29 47 17 35)(7 9 43 45 31 33 19 21)(10 12 46 48 34 36 22 24)

G:=sub<Sym(48)| (1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47)(2,36,22,8,42,28,14,48,34,20,6,40,26,12,46,32,18,4,38,24,10,44,30,16), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,3,37,39,25,27,13,15)(2,20,38,8,26,44,14,32)(4,6,40,42,28,30,16,18)(5,23,41,11,29,47,17,35)(7,9,43,45,31,33,19,21)(10,12,46,48,34,36,22,24)>;

G:=Group( (1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47)(2,36,22,8,42,28,14,48,34,20,6,40,26,12,46,32,18,4,38,24,10,44,30,16), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,3,37,39,25,27,13,15)(2,20,38,8,26,44,14,32)(4,6,40,42,28,30,16,18)(5,23,41,11,29,47,17,35)(7,9,43,45,31,33,19,21)(10,12,46,48,34,36,22,24) );

G=PermutationGroup([[(1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47),(2,36,22,8,42,28,14,48,34,20,6,40,26,12,46,32,18,4,38,24,10,44,30,16)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,3,37,39,25,27,13,15),(2,20,38,8,26,44,14,32),(4,6,40,42,28,30,16,18),(5,23,41,11,29,47,17,35),(7,9,43,45,31,33,19,21),(10,12,46,48,34,36,22,24)]])

72 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D6A6B6C8A8B8C8D8E8F8G8H12A12B12C12D12E12F16A···16P24A···24H24I24J24K24L48A···48P
order122233344446668888888812121212121216···1624···242424242448···48
size11992241199224111199992222443···32···244446···6

72 irreducible representations

dim11111111222224444
type+++++++
imageC1C2C2C4C4C8C8C16S3D6C4xS3S3xC8S3xC16S32C6.D6C12.29D6C24.60D6
kernelC24.60D6C3xC3:C16C8xC3:S3C32:4C8C4xC3:S3C3:Dic3C2xC3:S3C3:S3C3:C16C24C12C6C3C8C4C2C1
# reps1212244162248161124

Matrix representation of C24.60D6 in GL4(F97) generated by

47000
04700
00961
00960
,
128500
12000
0001
0010
,
04700
47000
0001
0010
G:=sub<GL(4,GF(97))| [47,0,0,0,0,47,0,0,0,0,96,96,0,0,1,0],[12,12,0,0,85,0,0,0,0,0,0,1,0,0,1,0],[0,47,0,0,47,0,0,0,0,0,0,1,0,0,1,0] >;

C24.60D6 in GAP, Magma, Sage, TeX

C_{24}._{60}D_6
% in TeX

G:=Group("C24.60D6");
// GroupNames label

G:=SmallGroup(288,190);
// by ID

G=gap.SmallGroup(288,190);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,28,36,58,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c|a^24=1,b^6=a^3,c^2=a^18,b*a*b^-1=c*a*c^-1=a^17,c*b*c^-1=a^6*b^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<