extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C3⋊Dic3)⋊1C4 = C62.32D4 | φ: C4/C1 → C4 ⊆ Out C2×C3⋊Dic3 | 24 | 4 | (C2xC3:Dic3):1C4 | 288,229 |
(C2×C3⋊Dic3)⋊2C4 = C62.110D4 | φ: C4/C1 → C4 ⊆ Out C2×C3⋊Dic3 | 72 | | (C2xC3:Dic3):2C4 | 288,281 |
(C2×C3⋊Dic3)⋊3C4 = (C2×C62)⋊C4 | φ: C4/C1 → C4 ⊆ Out C2×C3⋊Dic3 | 24 | 4 | (C2xC3:Dic3):3C4 | 288,434 |
(C2×C3⋊Dic3)⋊4C4 = C62.6Q8 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 96 | | (C2xC3:Dic3):4C4 | 288,227 |
(C2×C3⋊Dic3)⋊5C4 = C62.15Q8 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 288 | | (C2xC3:Dic3):5C4 | 288,306 |
(C2×C3⋊Dic3)⋊6C4 = (C6×C12)⋊2C4 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 48 | | (C2xC3:Dic3):6C4 | 288,429 |
(C2×C3⋊Dic3)⋊7C4 = C2×Dic32 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 96 | | (C2xC3:Dic3):7C4 | 288,602 |
(C2×C3⋊Dic3)⋊8C4 = C62.99C23 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 48 | | (C2xC3:Dic3):8C4 | 288,605 |
(C2×C3⋊Dic3)⋊9C4 = C2×C62.C22 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 96 | | (C2xC3:Dic3):9C4 | 288,615 |
(C2×C3⋊Dic3)⋊10C4 = C62.221C23 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 144 | | (C2xC3:Dic3):10C4 | 288,734 |
(C2×C3⋊Dic3)⋊11C4 = C2×C6.Dic6 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 288 | | (C2xC3:Dic3):11C4 | 288,780 |
(C2×C3⋊Dic3)⋊12C4 = C2×C4×C32⋊C4 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 48 | | (C2xC3:Dic3):12C4 | 288,932 |
(C2×C3⋊Dic3)⋊13C4 = C2×C4⋊(C32⋊C4) | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 48 | | (C2xC3:Dic3):13C4 | 288,933 |
(C2×C3⋊Dic3)⋊14C4 = (C6×C12)⋊5C4 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 24 | 4 | (C2xC3:Dic3):14C4 | 288,934 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C3⋊Dic3).1C4 = C12.71D12 | φ: C4/C1 → C4 ⊆ Out C2×C3⋊Dic3 | 48 | 4- | (C2xC3:Dic3).1C4 | 288,209 |
(C2×C3⋊Dic3).2C4 = C12.20D12 | φ: C4/C1 → C4 ⊆ Out C2×C3⋊Dic3 | 144 | | (C2xC3:Dic3).2C4 | 288,299 |
(C2×C3⋊Dic3).3C4 = C3⋊Dic3.D4 | φ: C4/C1 → C4 ⊆ Out C2×C3⋊Dic3 | 48 | 4- | (C2xC3:Dic3).3C4 | 288,428 |
(C2×C3⋊Dic3).4C4 = C2×C2.F9 | φ: C4/C1 → C4 ⊆ Out C2×C3⋊Dic3 | 96 | | (C2xC3:Dic3).4C4 | 288,865 |
(C2×C3⋊Dic3).5C4 = C22.F9 | φ: C4/C1 → C4 ⊆ Out C2×C3⋊Dic3 | 48 | 8- | (C2xC3:Dic3).5C4 | 288,866 |
(C2×C3⋊Dic3).6C4 = C6.(S3×C8) | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 96 | | (C2xC3:Dic3).6C4 | 288,201 |
(C2×C3⋊Dic3).7C4 = C2.Dic32 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 96 | | (C2xC3:Dic3).7C4 | 288,203 |
(C2×C3⋊Dic3).8C4 = C12.78D12 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 48 | | (C2xC3:Dic3).8C4 | 288,205 |
(C2×C3⋊Dic3).9C4 = C12.15Dic6 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 96 | | (C2xC3:Dic3).9C4 | 288,220 |
(C2×C3⋊Dic3).10C4 = C12.30Dic6 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 288 | | (C2xC3:Dic3).10C4 | 288,289 |
(C2×C3⋊Dic3).11C4 = C24⋊Dic3 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 288 | | (C2xC3:Dic3).11C4 | 288,290 |
(C2×C3⋊Dic3).12C4 = C12.60D12 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 144 | | (C2xC3:Dic3).12C4 | 288,295 |
(C2×C3⋊Dic3).13C4 = C4×C32⋊2C8 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 96 | | (C2xC3:Dic3).13C4 | 288,423 |
(C2×C3⋊Dic3).14C4 = (C3×C12)⋊4C8 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 96 | | (C2xC3:Dic3).14C4 | 288,424 |
(C2×C3⋊Dic3).15C4 = C32⋊2C8⋊C4 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 96 | | (C2xC3:Dic3).15C4 | 288,425 |
(C2×C3⋊Dic3).16C4 = C32⋊5(C4⋊C8) | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 96 | | (C2xC3:Dic3).16C4 | 288,427 |
(C2×C3⋊Dic3).17C4 = C62⋊3C8 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 48 | | (C2xC3:Dic3).17C4 | 288,435 |
(C2×C3⋊Dic3).18C4 = C2×C12.29D6 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 48 | | (C2xC3:Dic3).18C4 | 288,464 |
(C2×C3⋊Dic3).19C4 = C3⋊C8⋊20D6 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 24 | 4 | (C2xC3:Dic3).19C4 | 288,466 |
(C2×C3⋊Dic3).20C4 = C2×C12.31D6 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 48 | | (C2xC3:Dic3).20C4 | 288,468 |
(C2×C3⋊Dic3).21C4 = C2×C24⋊S3 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 144 | | (C2xC3:Dic3).21C4 | 288,757 |
(C2×C3⋊Dic3).22C4 = M4(2)×C3⋊S3 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 72 | | (C2xC3:Dic3).22C4 | 288,763 |
(C2×C3⋊Dic3).23C4 = C22×C32⋊2C8 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 96 | | (C2xC3:Dic3).23C4 | 288,939 |
(C2×C3⋊Dic3).24C4 = C2×C62.C4 | φ: C4/C2 → C2 ⊆ Out C2×C3⋊Dic3 | 48 | | (C2xC3:Dic3).24C4 | 288,940 |
(C2×C3⋊Dic3).25C4 = C8×C3⋊Dic3 | φ: trivial image | 288 | | (C2xC3:Dic3).25C4 | 288,288 |
(C2×C3⋊Dic3).26C4 = C2×C8×C3⋊S3 | φ: trivial image | 144 | | (C2xC3:Dic3).26C4 | 288,756 |