Extensions 1→N→G→Q→1 with N=D4:2S3 and Q=S3

Direct product G=NxQ with N=D4:2S3 and Q=S3
dρLabelID
S3xD4:2S3488-S3xD4:2S3288,959

Semidirect products G=N:Q with N=D4:2S3 and Q=S3
extensionφ:Q→Out NdρLabelID
D4:2S3:1S3 = Dic6:3D6φ: S3/C3C2 ⊆ Out D4:2S3488+D4:2S3:1S3288,573
D4:2S3:2S3 = D12.22D6φ: S3/C3C2 ⊆ Out D4:2S3488-D4:2S3:2S3288,581
D4:2S3:3S3 = Dic6.20D6φ: S3/C3C2 ⊆ Out D4:2S3488+D4:2S3:3S3288,583
D4:2S3:4S3 = Dic6.24D6φ: S3/C3C2 ⊆ Out D4:2S3488-D4:2S3:4S3288,957
D4:2S3:5S3 = D12:13D6φ: S3/C3C2 ⊆ Out D4:2S3248+D4:2S3:5S3288,962
D4:2S3:6S3 = Dic6:12D6φ: trivial image248+D4:2S3:6S3288,960

Non-split extensions G=N.Q with N=D4:2S3 and Q=S3
extensionφ:Q→Out NdρLabelID
D4:2S3.S3 = Dic6.19D6φ: S3/C3C2 ⊆ Out D4:2S3488-D4:2S3.S3288,577

׿
x
:
Z
F
o
wr
Q
<