Copied to
clipboard

G = Dic6.19D6order 288 = 25·32

6th non-split extension by Dic6 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial

Aliases: Dic6.19D6, D4.2S32, C3:C8.5D6, D4:2S3.S3, D4.S3:1S3, (S3xC6).9D4, (C3xD4).8D6, (C4xS3).6D6, (S3xDic6):5C2, C6.149(S3xD4), D6.7(C3:D4), C3:6(D4.D6), D6.Dic3:1C2, (C3xC12).6C23, C12.6(C22xS3), C32:2Q16:6C2, C3:2(Q8.14D6), C32:9SD16:2C2, (C3xDic3).35D4, C32:3Q16:11C2, C32:9(C8.C22), (S3xC12).13C22, C32:4C8.6C22, (D4xC32).2C22, Dic3.16(C3:D4), C32:4Q8.6C22, (C3xDic6).10C22, C4.6(C2xS32), (C3xD4.S3):1C2, C2.23(S3xC3:D4), C6.45(C2xC3:D4), (C3xC6).121(C2xD4), (C3xC3:C8).10C22, (C3xD4:2S3).1C2, SmallGroup(288,577)

Series: Derived Chief Lower central Upper central

C1C3xC12 — Dic6.19D6
C1C3C32C3xC6C3xC12S3xC12S3xDic6 — Dic6.19D6
C32C3xC6C3xC12 — Dic6.19D6
C1C2C4D4

Generators and relations for Dic6.19D6
 G = < a,b,c,d | a12=c6=1, b2=d2=a6, bab-1=a-1, cac-1=dad-1=a7, cbc-1=dbd-1=a9b, dcd-1=a6c-1 >

Subgroups: 458 in 130 conjugacy classes, 40 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C2xC4, D4, D4, Q8, C32, Dic3, Dic3, C12, C12, D6, C2xC6, M4(2), SD16, Q16, C2xQ8, C4oD4, C3xS3, C3xC6, C3xC6, C3:C8, C3:C8, C24, Dic6, Dic6, C4xS3, C4xS3, C2xDic3, C3:D4, C2xC12, C3xD4, C3xD4, C3xQ8, C8.C22, C3xDic3, C3xDic3, C3:Dic3, C3xC12, S3xC6, C62, C8:S3, Dic12, C4.Dic3, D4.S3, D4.S3, C3:Q16, C3xSD16, C2xDic6, D4:2S3, S3xQ8, C3xC4oD4, C3xC3:C8, C32:4C8, S3xDic3, C32:2Q8, C3xDic6, S3xC12, C6xDic3, C3xC3:D4, C32:4Q8, D4xC32, D4.D6, Q8.14D6, D6.Dic3, C32:2Q16, C32:3Q16, C3xD4.S3, C32:9SD16, S3xDic6, C3xD4:2S3, Dic6.19D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C3:D4, C22xS3, C8.C22, S32, S3xD4, C2xC3:D4, C2xS32, D4.D6, Q8.14D6, S3xC3:D4, Dic6.19D6

Smallest permutation representation of Dic6.19D6
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 13 7 19)(2 24 8 18)(3 23 9 17)(4 22 10 16)(5 21 11 15)(6 20 12 14)(25 48 31 42)(26 47 32 41)(27 46 33 40)(28 45 34 39)(29 44 35 38)(30 43 36 37)
(1 5 9)(2 12 10 8 6 4)(3 7 11)(13 24 17 16 21 20)(14 19 18 23 22 15)(25 27 29 31 33 35)(26 34 30)(28 36 32)(37 44 45 40 41 48)(38 39 46 47 42 43)
(1 29 7 35)(2 36 8 30)(3 31 9 25)(4 26 10 32)(5 33 11 27)(6 28 12 34)(13 47 19 41)(14 42 20 48)(15 37 21 43)(16 44 22 38)(17 39 23 45)(18 46 24 40)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,13,7,19)(2,24,8,18)(3,23,9,17)(4,22,10,16)(5,21,11,15)(6,20,12,14)(25,48,31,42)(26,47,32,41)(27,46,33,40)(28,45,34,39)(29,44,35,38)(30,43,36,37), (1,5,9)(2,12,10,8,6,4)(3,7,11)(13,24,17,16,21,20)(14,19,18,23,22,15)(25,27,29,31,33,35)(26,34,30)(28,36,32)(37,44,45,40,41,48)(38,39,46,47,42,43), (1,29,7,35)(2,36,8,30)(3,31,9,25)(4,26,10,32)(5,33,11,27)(6,28,12,34)(13,47,19,41)(14,42,20,48)(15,37,21,43)(16,44,22,38)(17,39,23,45)(18,46,24,40)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,13,7,19)(2,24,8,18)(3,23,9,17)(4,22,10,16)(5,21,11,15)(6,20,12,14)(25,48,31,42)(26,47,32,41)(27,46,33,40)(28,45,34,39)(29,44,35,38)(30,43,36,37), (1,5,9)(2,12,10,8,6,4)(3,7,11)(13,24,17,16,21,20)(14,19,18,23,22,15)(25,27,29,31,33,35)(26,34,30)(28,36,32)(37,44,45,40,41,48)(38,39,46,47,42,43), (1,29,7,35)(2,36,8,30)(3,31,9,25)(4,26,10,32)(5,33,11,27)(6,28,12,34)(13,47,19,41)(14,42,20,48)(15,37,21,43)(16,44,22,38)(17,39,23,45)(18,46,24,40) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,13,7,19),(2,24,8,18),(3,23,9,17),(4,22,10,16),(5,21,11,15),(6,20,12,14),(25,48,31,42),(26,47,32,41),(27,46,33,40),(28,45,34,39),(29,44,35,38),(30,43,36,37)], [(1,5,9),(2,12,10,8,6,4),(3,7,11),(13,24,17,16,21,20),(14,19,18,23,22,15),(25,27,29,31,33,35),(26,34,30),(28,36,32),(37,44,45,40,41,48),(38,39,46,47,42,43)], [(1,29,7,35),(2,36,8,30),(3,31,9,25),(4,26,10,32),(5,33,11,27),(6,28,12,34),(13,47,19,41),(14,42,20,48),(15,37,21,43),(16,44,22,38),(17,39,23,45),(18,46,24,40)]])

33 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D4E6A6B6C6D6E6F6G6H6I8A8B12A12B12C12D12E12F12G12H24A24B
order1222333444446666666668812121212121212122424
size11462242612123622444888121236446681212241212

33 irreducible representations

dim11111111222222222244444448
type++++++++++++++++-+++---
imageC1C2C2C2C2C2C2C2S3S3D4D4D6D6D6D6C3:D4C3:D4C8.C22S32S3xD4C2xS32D4.D6Q8.14D6S3xC3:D4Dic6.19D6
kernelDic6.19D6D6.Dic3C32:2Q16C32:3Q16C3xD4.S3C32:9SD16S3xDic6C3xD4:2S3D4.S3D4:2S3C3xDic3S3xC6C3:C8Dic6C4xS3C3xD4Dic3D6C32D4C6C4C3C3C2C1
# reps11111111111112122211112221

Matrix representation of Dic6.19D6 in GL8(F73)

640000000
448000000
00800000
0029640000
000016600
0000427200
000000727
000000311
,
00100000
00010000
10000000
01000000
00000010
00000001
000072000
000007200
,
640000000
448000000
006400000
004480000
00001000
0000427200
000000727
00000001
,
0036670000
009370000
3667000000
937000000
00004550652
0000028530
0000021450
00002066528

G:=sub<GL(8,GF(73))| [64,44,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,8,29,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,1,42,0,0,0,0,0,0,66,72,0,0,0,0,0,0,0,0,72,31,0,0,0,0,0,0,7,1],[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[64,44,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,64,44,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,1,42,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,7,1],[0,0,36,9,0,0,0,0,0,0,67,37,0,0,0,0,36,9,0,0,0,0,0,0,67,37,0,0,0,0,0,0,0,0,0,0,45,0,0,20,0,0,0,0,50,28,21,6,0,0,0,0,6,53,45,65,0,0,0,0,52,0,0,28] >;

Dic6.19D6 in GAP, Magma, Sage, TeX

{\rm Dic}_6._{19}D_6
% in TeX

G:=Group("Dic6.19D6");
// GroupNames label

G:=SmallGroup(288,577);
// by ID

G=gap.SmallGroup(288,577);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,422,135,346,185,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^12=c^6=1,b^2=d^2=a^6,b*a*b^-1=a^-1,c*a*c^-1=d*a*d^-1=a^7,c*b*c^-1=d*b*d^-1=a^9*b,d*c*d^-1=a^6*c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<