Extensions 1→N→G→Q→1 with N=C3 and Q=C2×D4.S3

Direct product G=N×Q with N=C3 and Q=C2×D4.S3
dρLabelID
C6×D4.S348C6xD4.S3288,704

Semidirect products G=N:Q with N=C3 and Q=C2×D4.S3
extensionφ:Q→Aut NdρLabelID
C31(C2×D4.S3) = C2×D12.S3φ: C2×D4.S3/C2×C3⋊C8C2 ⊆ Aut C396C3:1(C2xD4.S3)288,476
C32(C2×D4.S3) = S3×D4.S3φ: C2×D4.S3/D4.S3C2 ⊆ Aut C3488-C3:2(C2xD4.S3)288,576
C33(C2×D4.S3) = C2×Dic6⋊S3φ: C2×D4.S3/C2×Dic6C2 ⊆ Aut C396C3:3(C2xD4.S3)288,474
C34(C2×D4.S3) = C2×C329SD16φ: C2×D4.S3/C6×D4C2 ⊆ Aut C3144C3:4(C2xD4.S3)288,790

Non-split extensions G=N.Q with N=C3 and Q=C2×D4.S3
extensionφ:Q→Aut NdρLabelID
C3.(C2×D4.S3) = C2×D4.D9φ: C2×D4.S3/C6×D4C2 ⊆ Aut C3144C3.(C2xD4.S3)288,141

׿
×
𝔽