direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C6xD4, C23:2C6, C12:4C22, C6.11C23, C4:(C2xC6), (C2xC4):2C6, (C2xC12):6C2, (C22xC6):1C2, (C2xC6):2C22, C22:2(C2xC6), C2.1(C22xC6), SmallGroup(48,45)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C6xD4
G = < a,b,c | a6=b4=c2=1, ab=ba, ac=ca, cbc=b-1 >
Subgroups: 70 in 54 conjugacy classes, 38 normal (10 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C6, C2xC4, D4, C23, C12, C2xC6, C2xC6, C2xC6, C2xD4, C2xC12, C3xD4, C22xC6, C6xD4
Quotients: C1, C2, C3, C22, C6, D4, C23, C2xC6, C2xD4, C3xD4, C22xC6, C6xD4
Character table of C6xD4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 6N | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ65 | ζ65 | ζ6 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | ζ32 | ζ3 | ζ3 | ζ32 | linear of order 6 |
ρ10 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | ζ3 | ζ32 | 1 | -1 | ζ65 | ζ32 | ζ6 | ζ65 | ζ3 | ζ6 | ζ65 | ζ3 | ζ6 | ζ65 | ζ3 | ζ32 | ζ6 | ζ32 | ζ6 | ζ65 | ζ3 | ζ32 | linear of order 6 |
ρ11 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | -1 | 1 | ζ65 | ζ32 | ζ6 | ζ65 | ζ3 | ζ6 | ζ65 | ζ65 | ζ6 | ζ3 | ζ3 | ζ32 | ζ32 | ζ6 | ζ32 | ζ3 | ζ65 | ζ6 | linear of order 6 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | -1 | -1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ65 | ζ3 | ζ6 | ζ3 | ζ65 | ζ6 | ζ32 | ζ32 | ζ6 | ζ65 | ζ65 | ζ6 | linear of order 6 |
ρ13 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | -1 | 1 | ζ6 | ζ3 | ζ65 | ζ6 | ζ32 | ζ65 | ζ6 | ζ6 | ζ65 | ζ32 | ζ32 | ζ3 | ζ3 | ζ65 | ζ3 | ζ32 | ζ6 | ζ65 | linear of order 6 |
ρ14 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ6 | ζ3 | ζ6 | ζ32 | ζ3 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | ζ65 | linear of order 6 |
ρ15 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | ζ32 | ζ3 | 1 | -1 | ζ6 | ζ3 | ζ65 | ζ6 | ζ32 | ζ65 | ζ6 | ζ32 | ζ65 | ζ6 | ζ32 | ζ3 | ζ65 | ζ3 | ζ65 | ζ6 | ζ32 | ζ3 | linear of order 6 |
ρ16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ17 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | ζ3 | ζ32 | -1 | 1 | ζ65 | ζ32 | ζ6 | ζ65 | ζ3 | ζ6 | ζ3 | ζ3 | ζ32 | ζ65 | ζ65 | ζ6 | ζ6 | ζ32 | ζ32 | ζ3 | ζ65 | ζ6 | linear of order 6 |
ρ18 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ65 | ζ32 | ζ65 | ζ3 | ζ32 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | ζ6 | linear of order 6 |
ρ19 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ20 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | ζ3 | ζ32 | 1 | -1 | ζ65 | ζ32 | ζ6 | ζ65 | ζ3 | ζ6 | ζ3 | ζ65 | ζ32 | ζ3 | ζ65 | ζ6 | ζ32 | ζ6 | ζ6 | ζ65 | ζ3 | ζ32 | linear of order 6 |
ρ21 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | ζ32 | ζ3 | 1 | -1 | ζ6 | ζ3 | ζ65 | ζ6 | ζ32 | ζ65 | ζ32 | ζ6 | ζ3 | ζ32 | ζ6 | ζ65 | ζ3 | ζ65 | ζ65 | ζ6 | ζ32 | ζ3 | linear of order 6 |
ρ22 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ6 | ζ6 | ζ65 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | ζ3 | ζ32 | ζ32 | ζ3 | linear of order 6 |
ρ23 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | ζ32 | ζ3 | -1 | 1 | ζ6 | ζ3 | ζ65 | ζ6 | ζ32 | ζ65 | ζ32 | ζ32 | ζ3 | ζ6 | ζ6 | ζ65 | ζ65 | ζ3 | ζ3 | ζ32 | ζ6 | ζ65 | linear of order 6 |
ρ24 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | -1 | -1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ6 | ζ32 | ζ65 | ζ32 | ζ6 | ζ65 | ζ3 | ζ3 | ζ65 | ζ6 | ζ6 | ζ65 | linear of order 6 |
ρ25 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ26 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ27 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 1+√-3 | 1-√-3 | -1+√-3 | -1-√-3 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3xD4 |
ρ28 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | -1-√-3 | 1-√-3 | 1-√-3 | 1+√-3 | 1+√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3xD4 |
ρ29 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 1-√-3 | 1+√-3 | -1-√-3 | -1+√-3 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3xD4 |
ρ30 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | -1+√-3 | 1+√-3 | 1+√-3 | 1-√-3 | 1-√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3xD4 |
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 8 14 19)(2 9 15 20)(3 10 16 21)(4 11 17 22)(5 12 18 23)(6 7 13 24)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 13)(8 14)(9 15)(10 16)(11 17)(12 18)
G:=sub<Sym(24)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,8,14,19)(2,9,15,20)(3,10,16,21)(4,11,17,22)(5,12,18,23)(6,7,13,24), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,8,14,19)(2,9,15,20)(3,10,16,21)(4,11,17,22)(5,12,18,23)(6,7,13,24), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,8,14,19),(2,9,15,20),(3,10,16,21),(4,11,17,22),(5,12,18,23),(6,7,13,24)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,13),(8,14),(9,15),(10,16),(11,17),(12,18)]])
G:=TransitiveGroup(24,38);
C6xD4 is a maximal subgroup of
D4:Dic3 C12.D4 C23.7D6 D12:6C22 C23.23D6 C23.12D6 C23:2D6 D6:3D4 C23.14D6 C12:3D4 D4:6D6
Matrix representation of C6xD4 ►in GL3(F13) generated by
4 | 0 | 0 |
0 | 12 | 0 |
0 | 0 | 12 |
1 | 0 | 0 |
0 | 12 | 11 |
0 | 1 | 1 |
1 | 0 | 0 |
0 | 12 | 11 |
0 | 0 | 1 |
G:=sub<GL(3,GF(13))| [4,0,0,0,12,0,0,0,12],[1,0,0,0,12,1,0,11,1],[1,0,0,0,12,0,0,11,1] >;
C6xD4 in GAP, Magma, Sage, TeX
C_6\times D_4
% in TeX
G:=Group("C6xD4");
// GroupNames label
G:=SmallGroup(48,45);
// by ID
G=gap.SmallGroup(48,45);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-2,261]);
// Polycyclic
G:=Group<a,b,c|a^6=b^4=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export