Extensions 1→N→G→Q→1 with N=D4×D9 and Q=C2

Direct product G=N×Q with N=D4×D9 and Q=C2
dρLabelID
C2×D4×D972C2xD4xD9288,356

Semidirect products G=N:Q with N=D4×D9 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×D9)⋊1C2 = D8×D9φ: C2/C1C2 ⊆ Out D4×D9724+(D4xD9):1C2288,120
(D4×D9)⋊2C2 = D8⋊D9φ: C2/C1C2 ⊆ Out D4×D9724(D4xD9):2C2288,121
(D4×D9)⋊3C2 = D72⋊C2φ: C2/C1C2 ⊆ Out D4×D9724+(D4xD9):3C2288,124
(D4×D9)⋊4C2 = D46D18φ: C2/C1C2 ⊆ Out D4×D9724(D4xD9):4C2288,358
(D4×D9)⋊5C2 = D48D18φ: C2/C1C2 ⊆ Out D4×D9724+(D4xD9):5C2288,363
(D4×D9)⋊6C2 = C4○D4×D9φ: trivial image724(D4xD9):6C2288,362

Non-split extensions G=N.Q with N=D4×D9 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×D9).C2 = SD16×D9φ: C2/C1C2 ⊆ Out D4×D9724(D4xD9).C2288,123

׿
×
𝔽