Copied to
clipboard

G = D4:6D18order 288 = 25·32

2nd semidirect product of D4 and D18 acting through Inn(D4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4:6D18, C23:3D18, D36:8C22, C18.7C24, C9:12+ 1+4, C36.21C23, D18.3C23, Dic18:8C22, Dic9.4C23, (D4xD9):4C2, (C2xD4):7D9, (C2xC4):3D18, (D4xC18):7C2, D4:2D9:4C2, C3.(D4:6D6), (C2xC36):3C22, (C6xD4).14S3, (C3xD4).37D6, (C4xD9):1C22, (D4xC9):7C22, C9:D4:3C22, D36:5C2:5C2, C2.8(C23xD9), (C2xC12).100D6, (C2xC18).2C23, C6.44(S3xC23), C4.21(C22xD9), (C22xC6).60D6, C12.61(C22xS3), (C22xC18):5C22, (C2xDic9):4C22, (C22xD9):3C22, C22.6(C22xD9), (C2xC9:D4):11C2, (C2xC6).223(C22xS3), SmallGroup(288,358)

Series: Derived Chief Lower central Upper central

C1C18 — D4:6D18
C1C3C9C18D18C22xD9D4xD9 — D4:6D18
C9C18 — D4:6D18
C1C2C2xD4

Generators and relations for D4:6D18
 G = < a,b,c,d | a4=b2=c18=d2=1, bab=cac-1=a-1, ad=da, cbc-1=dbd=a2b, dcd=c-1 >

Subgroups: 1080 in 249 conjugacy classes, 102 normal (16 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, D4, Q8, C23, C23, C9, Dic3, C12, D6, C2xC6, C2xC6, C2xC6, C2xD4, C2xD4, C4oD4, D9, C18, C18, Dic6, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C3xD4, C22xS3, C22xC6, 2+ 1+4, Dic9, C36, D18, D18, C2xC18, C2xC18, C2xC18, C4oD12, S3xD4, D4:2S3, C2xC3:D4, C6xD4, Dic18, C4xD9, D36, C2xDic9, C9:D4, C2xC36, D4xC9, C22xD9, C22xC18, D4:6D6, D36:5C2, D4xD9, D4:2D9, C2xC9:D4, D4xC18, D4:6D18
Quotients: C1, C2, C22, S3, C23, D6, C24, D9, C22xS3, 2+ 1+4, D18, S3xC23, C22xD9, D4:6D6, C23xD9, D4:6D18

Smallest permutation representation of D4:6D18
On 72 points
Generators in S72
(1 62 17 71)(2 72 18 63)(3 64 10 55)(4 56 11 65)(5 66 12 57)(6 58 13 67)(7 68 14 59)(8 60 15 69)(9 70 16 61)(19 42 29 51)(20 52 30 43)(21 44 31 53)(22 54 32 45)(23 46 33 37)(24 38 34 47)(25 48 35 39)(26 40 36 49)(27 50 28 41)
(1 39)(2 49)(3 41)(4 51)(5 43)(6 53)(7 45)(8 37)(9 47)(10 50)(11 42)(12 52)(13 44)(14 54)(15 46)(16 38)(17 48)(18 40)(19 65)(20 57)(21 67)(22 59)(23 69)(24 61)(25 71)(26 63)(27 55)(28 64)(29 56)(30 66)(31 58)(32 68)(33 60)(34 70)(35 62)(36 72)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 9)(2 8)(3 7)(4 6)(10 14)(11 13)(15 18)(16 17)(19 31)(20 30)(21 29)(22 28)(23 36)(24 35)(25 34)(26 33)(27 32)(37 40)(38 39)(41 54)(42 53)(43 52)(44 51)(45 50)(46 49)(47 48)(55 59)(56 58)(60 72)(61 71)(62 70)(63 69)(64 68)(65 67)

G:=sub<Sym(72)| (1,62,17,71)(2,72,18,63)(3,64,10,55)(4,56,11,65)(5,66,12,57)(6,58,13,67)(7,68,14,59)(8,60,15,69)(9,70,16,61)(19,42,29,51)(20,52,30,43)(21,44,31,53)(22,54,32,45)(23,46,33,37)(24,38,34,47)(25,48,35,39)(26,40,36,49)(27,50,28,41), (1,39)(2,49)(3,41)(4,51)(5,43)(6,53)(7,45)(8,37)(9,47)(10,50)(11,42)(12,52)(13,44)(14,54)(15,46)(16,38)(17,48)(18,40)(19,65)(20,57)(21,67)(22,59)(23,69)(24,61)(25,71)(26,63)(27,55)(28,64)(29,56)(30,66)(31,58)(32,68)(33,60)(34,70)(35,62)(36,72), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,9)(2,8)(3,7)(4,6)(10,14)(11,13)(15,18)(16,17)(19,31)(20,30)(21,29)(22,28)(23,36)(24,35)(25,34)(26,33)(27,32)(37,40)(38,39)(41,54)(42,53)(43,52)(44,51)(45,50)(46,49)(47,48)(55,59)(56,58)(60,72)(61,71)(62,70)(63,69)(64,68)(65,67)>;

G:=Group( (1,62,17,71)(2,72,18,63)(3,64,10,55)(4,56,11,65)(5,66,12,57)(6,58,13,67)(7,68,14,59)(8,60,15,69)(9,70,16,61)(19,42,29,51)(20,52,30,43)(21,44,31,53)(22,54,32,45)(23,46,33,37)(24,38,34,47)(25,48,35,39)(26,40,36,49)(27,50,28,41), (1,39)(2,49)(3,41)(4,51)(5,43)(6,53)(7,45)(8,37)(9,47)(10,50)(11,42)(12,52)(13,44)(14,54)(15,46)(16,38)(17,48)(18,40)(19,65)(20,57)(21,67)(22,59)(23,69)(24,61)(25,71)(26,63)(27,55)(28,64)(29,56)(30,66)(31,58)(32,68)(33,60)(34,70)(35,62)(36,72), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,9)(2,8)(3,7)(4,6)(10,14)(11,13)(15,18)(16,17)(19,31)(20,30)(21,29)(22,28)(23,36)(24,35)(25,34)(26,33)(27,32)(37,40)(38,39)(41,54)(42,53)(43,52)(44,51)(45,50)(46,49)(47,48)(55,59)(56,58)(60,72)(61,71)(62,70)(63,69)(64,68)(65,67) );

G=PermutationGroup([[(1,62,17,71),(2,72,18,63),(3,64,10,55),(4,56,11,65),(5,66,12,57),(6,58,13,67),(7,68,14,59),(8,60,15,69),(9,70,16,61),(19,42,29,51),(20,52,30,43),(21,44,31,53),(22,54,32,45),(23,46,33,37),(24,38,34,47),(25,48,35,39),(26,40,36,49),(27,50,28,41)], [(1,39),(2,49),(3,41),(4,51),(5,43),(6,53),(7,45),(8,37),(9,47),(10,50),(11,42),(12,52),(13,44),(14,54),(15,46),(16,38),(17,48),(18,40),(19,65),(20,57),(21,67),(22,59),(23,69),(24,61),(25,71),(26,63),(27,55),(28,64),(29,56),(30,66),(31,58),(32,68),(33,60),(34,70),(35,62),(36,72)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,9),(2,8),(3,7),(4,6),(10,14),(11,13),(15,18),(16,17),(19,31),(20,30),(21,29),(22,28),(23,36),(24,35),(25,34),(26,33),(27,32),(37,40),(38,39),(41,54),(42,53),(43,52),(44,51),(45,50),(46,49),(47,48),(55,59),(56,58),(60,72),(61,71),(62,70),(63,69),(64,68),(65,67)]])

57 conjugacy classes

class 1 2A2B···2F2G2H2I2J 3 4A4B4C4D4E4F6A6B6C6D6E6F6G9A9B9C12A12B18A···18I18J···18U36A···36F
order122···2222234444446666666999121218···1818···1836···36
size112···218181818222181818182224444222442···24···44···4

57 irreducible representations

dim11111122222222444
type+++++++++++++++
imageC1C2C2C2C2C2S3D6D6D6D9D18D18D182+ 1+4D4:6D6D4:6D18
kernelD4:6D18D36:5C2D4xD9D4:2D9C2xC9:D4D4xC18C6xD4C2xC12C3xD4C22xC6C2xD4C2xC4D4C23C9C3C1
# reps124441114233126126

Matrix representation of D4:6D18 in GL6(F37)

100000
010000
00003023
0000147
0071400
00233000
,
100000
010000
000010
000001
001000
000100
,
6170000
20260000
000100
00363600
0000036
000011
,
6170000
11310000
000100
001000
0000036
0000360

G:=sub<GL(6,GF(37))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,7,23,0,0,0,0,14,30,0,0,30,14,0,0,0,0,23,7,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[6,20,0,0,0,0,17,26,0,0,0,0,0,0,0,36,0,0,0,0,1,36,0,0,0,0,0,0,0,1,0,0,0,0,36,1],[6,11,0,0,0,0,17,31,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,36,0,0,0,0,36,0] >;

D4:6D18 in GAP, Magma, Sage, TeX

D_4\rtimes_6D_{18}
% in TeX

G:=Group("D4:6D18");
// GroupNames label

G:=SmallGroup(288,358);
// by ID

G=gap.SmallGroup(288,358);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,219,675,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^18=d^2=1,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<