Extensions 1→N→G→Q→1 with N=C4 and Q=C3×S4

Direct product G=N×Q with N=C4 and Q=C3×S4
dρLabelID
C12×S4363C12xS4288,897

Semidirect products G=N:Q with N=C4 and Q=C3×S4
extensionφ:Q→Aut NdρLabelID
C4⋊(C3×S4) = C3×C4⋊S4φ: C3×S4/C3×A4C2 ⊆ Aut C4366C4:(C3xS4)288,898

Non-split extensions G=N.Q with N=C4 and Q=C3×S4
extensionφ:Q→Aut NdρLabelID
C4.1(C3×S4) = C3×A4⋊Q8φ: C3×S4/C3×A4C2 ⊆ Aut C4726C4.1(C3xS4)288,896
C4.2(C3×S4) = C3×C4.S4φ: C3×S4/C3×A4C2 ⊆ Aut C4964C4.2(C3xS4)288,902
C4.3(C3×S4) = C3×C4.3S4φ: C3×S4/C3×A4C2 ⊆ Aut C4484C4.3(C3xS4)288,904
C4.4(C3×S4) = C3×A4⋊C8central extension (φ=1)723C4.4(C3xS4)288,398
C4.5(C3×S4) = C3×U2(𝔽3)central extension (φ=1)722C4.5(C3xS4)288,400
C4.6(C3×S4) = C3×C4.6S4central extension (φ=1)482C4.6(C3xS4)288,903

׿
×
𝔽