direct product, non-abelian, soluble, monomial
Aliases: C3×C4⋊S4, C12⋊3S4, C4⋊(C3×S4), (C6×S4)⋊4C2, (C2×S4)⋊1C6, (C4×A4)⋊1C6, (C3×A4)⋊4D4, A4⋊1(C3×D4), (C2×C6)⋊2D12, C2.4(C6×S4), C22⋊(C3×D12), (C12×A4)⋊2C2, C6.41(C2×S4), (C22×C12)⋊4S3, C23.3(S3×C6), (C22×C6).10D6, (C6×A4).10C22, (C2×A4).3(C2×C6), (C22×C4)⋊2(C3×S3), SmallGroup(288,898)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C4⋊S4
G = < a,b,c,d,e,f | a3=b4=c2=d2=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf=b-1, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=e-1 >
Subgroups: 466 in 118 conjugacy classes, 24 normal (20 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, D4, C23, C23, C32, C12, C12, A4, A4, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C3×S3, C3×C6, D12, C2×C12, C3×D4, S4, C2×A4, C2×A4, C22×C6, C22×C6, C4⋊D4, C3×C12, C3×A4, S3×C6, C3×C22⋊C4, C3×C4⋊C4, C4×A4, C4×A4, C22×C12, C6×D4, C2×S4, C3×D12, C3×S4, C6×A4, C3×C4⋊D4, C4⋊S4, C12×A4, C6×S4, C3×C4⋊S4
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, C3×S3, D12, C3×D4, S4, S3×C6, C2×S4, C3×D12, C3×S4, C4⋊S4, C6×S4, C3×C4⋊S4
(1 35 23)(2 36 24)(3 33 21)(4 34 22)(5 12 31)(6 9 32)(7 10 29)(8 11 30)(13 19 27)(14 20 28)(15 17 25)(16 18 26)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)
(1 3)(2 4)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(33 35)(34 36)
(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(25 27)(26 28)(29 31)(30 32)
(1 13 5)(2 14 6)(3 15 7)(4 16 8)(9 36 20)(10 33 17)(11 34 18)(12 35 19)(21 25 29)(22 26 30)(23 27 31)(24 28 32)
(1 4)(2 3)(5 16)(6 15)(7 14)(8 13)(9 17)(10 20)(11 19)(12 18)(21 24)(22 23)(25 32)(26 31)(27 30)(28 29)(33 36)(34 35)
G:=sub<Sym(36)| (1,35,23)(2,36,24)(3,33,21)(4,34,22)(5,12,31)(6,9,32)(7,10,29)(8,11,30)(13,19,27)(14,20,28)(15,17,25)(16,18,26), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,3)(2,4)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(33,35)(34,36), (5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(25,27)(26,28)(29,31)(30,32), (1,13,5)(2,14,6)(3,15,7)(4,16,8)(9,36,20)(10,33,17)(11,34,18)(12,35,19)(21,25,29)(22,26,30)(23,27,31)(24,28,32), (1,4)(2,3)(5,16)(6,15)(7,14)(8,13)(9,17)(10,20)(11,19)(12,18)(21,24)(22,23)(25,32)(26,31)(27,30)(28,29)(33,36)(34,35)>;
G:=Group( (1,35,23)(2,36,24)(3,33,21)(4,34,22)(5,12,31)(6,9,32)(7,10,29)(8,11,30)(13,19,27)(14,20,28)(15,17,25)(16,18,26), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,3)(2,4)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(33,35)(34,36), (5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(25,27)(26,28)(29,31)(30,32), (1,13,5)(2,14,6)(3,15,7)(4,16,8)(9,36,20)(10,33,17)(11,34,18)(12,35,19)(21,25,29)(22,26,30)(23,27,31)(24,28,32), (1,4)(2,3)(5,16)(6,15)(7,14)(8,13)(9,17)(10,20)(11,19)(12,18)(21,24)(22,23)(25,32)(26,31)(27,30)(28,29)(33,36)(34,35) );
G=PermutationGroup([[(1,35,23),(2,36,24),(3,33,21),(4,34,22),(5,12,31),(6,9,32),(7,10,29),(8,11,30),(13,19,27),(14,20,28),(15,17,25),(16,18,26)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36)], [(1,3),(2,4),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(33,35),(34,36)], [(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(25,27),(26,28),(29,31),(30,32)], [(1,13,5),(2,14,6),(3,15,7),(4,16,8),(9,36,20),(10,33,17),(11,34,18),(12,35,19),(21,25,29),(22,26,30),(23,27,31),(24,28,32)], [(1,4),(2,3),(5,16),(6,15),(7,14),(8,13),(9,17),(10,20),(11,19),(12,18),(21,24),(22,23),(25,32),(26,31),(27,30),(28,29),(33,36),(34,35)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 12A | 12B | 12C | 12D | 12E | ··· | 12J | 12K | 12L | 12M | 12N |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 3 | 3 | 12 | 12 | 1 | 1 | 8 | 8 | 8 | 2 | 6 | 12 | 12 | 1 | 1 | 3 | 3 | 3 | 3 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 2 | 2 | 6 | 6 | 8 | ··· | 8 | 12 | 12 | 12 | 12 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 6 | 6 |
type | + | + | + | + | + | + | + | + | + | + | ||||||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | S3 | D4 | D6 | C3×S3 | C3×D4 | D12 | S3×C6 | C3×D12 | S4 | C2×S4 | C3×S4 | C6×S4 | C4⋊S4 | C3×C4⋊S4 |
kernel | C3×C4⋊S4 | C12×A4 | C6×S4 | C4⋊S4 | C4×A4 | C2×S4 | C22×C12 | C3×A4 | C22×C6 | C22×C4 | A4 | C2×C6 | C23 | C22 | C12 | C6 | C4 | C2 | C3 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 4 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 4 | 4 | 1 | 2 |
Matrix representation of C3×C4⋊S4 ►in GL5(𝔽13)
9 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 12 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 | 1 |
0 | 0 | 12 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 12 |
0 | 0 | 1 | 0 | 12 |
0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 1 | 12 | 0 |
0 | 0 | 0 | 12 | 1 |
0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(13))| [9,0,0,0,0,0,9,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,1,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,12,12,12,0,0,0,0,1,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,12,12,12],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,12,12,12,0,0,0,0,1],[0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1] >;
C3×C4⋊S4 in GAP, Magma, Sage, TeX
C_3\times C_4\rtimes S_4
% in TeX
G:=Group("C3xC4:S4");
// GroupNames label
G:=SmallGroup(288,898);
// by ID
G=gap.SmallGroup(288,898);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-3,-2,2,197,92,1684,6053,285,3534,475]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^4=c^2=d^2=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=b^-1,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=e^-1>;
// generators/relations