Extensions 1→N→G→Q→1 with N=C4 and Q=C3⋊S4

Direct product G=N×Q with N=C4 and Q=C3⋊S4
dρLabelID
C4×C3⋊S4366C4xC3:S4288,908

Semidirect products G=N:Q with N=C4 and Q=C3⋊S4
extensionφ:Q→Aut NdρLabelID
C4⋊(C3⋊S4) = C12⋊S4φ: C3⋊S4/C3×A4C2 ⊆ Aut C4366+C4:(C3:S4)288,909

Non-split extensions G=N.Q with N=C4 and Q=C3⋊S4
extensionφ:Q→Aut NdρLabelID
C4.1(C3⋊S4) = A4⋊Dic6φ: C3⋊S4/C3×A4C2 ⊆ Aut C4726-C4.1(C3:S4)288,907
C4.2(C3⋊S4) = C12.6S4φ: C3⋊S4/C3×A4C2 ⊆ Aut C4964-C4.2(C3:S4)288,913
C4.3(C3⋊S4) = C12.7S4φ: C3⋊S4/C3×A4C2 ⊆ Aut C4484+C4.3(C3:S4)288,915
C4.4(C3⋊S4) = C12.12S4central extension (φ=1)726C4.4(C3:S4)288,402
C4.5(C3⋊S4) = C3⋊U2(𝔽3)central extension (φ=1)724C4.5(C3:S4)288,404
C4.6(C3⋊S4) = C12.14S4central extension (φ=1)484C4.6(C3:S4)288,914

׿
×
𝔽