Copied to
clipboard

G = C12:S4order 288 = 25·32

1st semidirect product of C12 and S4 acting via S4/A4=C2

non-abelian, soluble, monomial

Aliases: C12:1S4, A4:1D12, C4:(C3:S4), C3:1(C4:S4), (C4xA4):1S3, (C3xA4):5D4, (C2xC6):3D12, (C12xA4):1C2, C6.30(C2xS4), (C22xC12):2S3, (C2xA4).10D6, C22:(C12:S3), (C22xC6).21D6, (C6xA4).15C22, (C2xC3:S4):3C2, C2.4(C2xC3:S4), C23.3(C2xC3:S3), (C22xC4):2(C3:S3), SmallGroup(288,909)

Series: Derived Chief Lower central Upper central

C1C22C6xA4 — C12:S4
C1C22C2xC6C3xA4C6xA4C2xC3:S4 — C12:S4
C3xA4C6xA4 — C12:S4
C1C2C4

Generators and relations for C12:S4
 G = < a,b,c,d,e | a12=b2=c2=d3=e2=1, ab=ba, ac=ca, ad=da, eae=a-1, dbd-1=ebe=bc=cb, dcd-1=b, ce=ec, ede=d-1 >

Subgroups: 1028 in 144 conjugacy classes, 27 normal (16 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, D4, C23, C23, C32, Dic3, C12, C12, A4, D6, C2xC6, C2xC6, C22:C4, C4:C4, C22xC4, C2xD4, C3:S3, C3xC6, D12, C2xDic3, C3:D4, C2xC12, S4, C2xA4, C22xS3, C22xC6, C4:D4, C3xC12, C3xA4, C2xC3:S3, C4:Dic3, D6:C4, C4xA4, C2xD12, C2xC3:D4, C22xC12, C2xS4, C12:S3, C3:S4, C6xA4, C12:7D4, C4:S4, C12xA4, C2xC3:S4, C12:S4
Quotients: C1, C2, C22, S3, D4, D6, C3:S3, D12, S4, C2xC3:S3, C2xS4, C12:S3, C3:S4, C4:S4, C2xC3:S4, C12:S4

Character table of C12:S4

 class 12A2B2C2D2E3A3B3C3D4A4B4C4D6A6B6C6D6E6F12A12B12C12D12E12F12G12H12I12J
 size 1133363628882636362668882266888888
ρ1111111111111111111111111111111    trivial
ρ21111-1-1111111-1-11111111111111111    linear of order 2
ρ31111-111111-1-1-11111111-1-1-1-1-1-1-1-1-1-1    linear of order 2
ρ411111-11111-1-11-1111111-1-1-1-1-1-1-1-1-1-1    linear of order 2
ρ52222002-1-1-1-2-200222-1-1-1-2-2-2-2111111    orthogonal lifted from D6
ρ6222200-1-12-1-2-200-1-1-12-1-11111-21-2111    orthogonal lifted from D6
ρ7222200-12-1-12200-1-1-1-12-1-1-1-1-1-12-1-12-1    orthogonal lifted from S3
ρ8222200-1-1-122200-1-1-1-1-12-1-1-1-1-1-1-12-12    orthogonal lifted from S3
ρ92-22-20022220000-2-22-2-2-20000000000    orthogonal lifted from D4
ρ10222200-1-12-12200-1-1-12-1-1-1-1-1-12-12-1-1-1    orthogonal lifted from S3
ρ11222200-12-1-1-2-200-1-1-1-12-111111-211-21    orthogonal lifted from D6
ρ122222002-1-1-12200222-1-1-12222-1-1-1-1-1-1    orthogonal lifted from S3
ρ13222200-1-1-12-2-200-1-1-1-1-121111111-21-2    orthogonal lifted from D6
ρ142-22-200-1-12-1000011-1-2113-33-30-3033-3    orthogonal lifted from D12
ρ152-22-2002-1-1-10000-2-2211100003-3-3-333    orthogonal lifted from D12
ρ162-22-200-1-1-12000011-111-2-33-33-3-33030    orthogonal lifted from D12
ρ172-22-200-1-12-1000011-1-211-33-33030-3-33    orthogonal lifted from D12
ρ182-22-200-12-1-1000011-11-21-33-3330-330-3    orthogonal lifted from D12
ρ192-22-2002-1-1-10000-2-221110000-3333-3-3    orthogonal lifted from D12
ρ202-22-200-12-1-1000011-11-213-33-3-303-303    orthogonal lifted from D12
ρ212-22-200-1-1-12000011-111-23-33-333-30-30    orthogonal lifted from D12
ρ2233-1-1-1-130003-1113-1-100033-1-1000000    orthogonal lifted from S4
ρ2333-1-11130003-1-1-13-1-100033-1-1000000    orthogonal lifted from S4
ρ2433-1-1-113000-311-13-1-1000-3-311000000    orthogonal lifted from C2xS4
ρ2533-1-11-13000-31-113-1-1000-3-311000000    orthogonal lifted from C2xS4
ρ2666-2-200-30006-200-311000-3-311000000    orthogonal lifted from C3:S4
ρ276-6-220060000000-62-20000000000000    orthogonal lifted from C4:S4
ρ2866-2-200-3000-6200-31100033-1-1000000    orthogonal lifted from C2xC3:S4
ρ296-6-2200-300000003-11000-33333-3000000    orthogonal faithful
ρ306-6-2200-300000003-1100033-33-33000000    orthogonal faithful

Smallest permutation representation of C12:S4
On 36 points
Generators in S36
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)
(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)
(1 29 23)(2 30 24)(3 31 13)(4 32 14)(5 33 15)(6 34 16)(7 35 17)(8 36 18)(9 25 19)(10 26 20)(11 27 21)(12 28 22)
(2 12)(3 11)(4 10)(5 9)(6 8)(13 27)(14 26)(15 25)(16 36)(17 35)(18 34)(19 33)(20 32)(21 31)(22 30)(23 29)(24 28)

G:=sub<Sym(36)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (1,29,23)(2,30,24)(3,31,13)(4,32,14)(5,33,15)(6,34,16)(7,35,17)(8,36,18)(9,25,19)(10,26,20)(11,27,21)(12,28,22), (2,12)(3,11)(4,10)(5,9)(6,8)(13,27)(14,26)(15,25)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,30)(23,29)(24,28)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (1,29,23)(2,30,24)(3,31,13)(4,32,14)(5,33,15)(6,34,16)(7,35,17)(8,36,18)(9,25,19)(10,26,20)(11,27,21)(12,28,22), (2,12)(3,11)(4,10)(5,9)(6,8)(13,27)(14,26)(15,25)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,30)(23,29)(24,28) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36)], [(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36)], [(1,29,23),(2,30,24),(3,31,13),(4,32,14),(5,33,15),(6,34,16),(7,35,17),(8,36,18),(9,25,19),(10,26,20),(11,27,21),(12,28,22)], [(2,12),(3,11),(4,10),(5,9),(6,8),(13,27),(14,26),(15,25),(16,36),(17,35),(18,34),(19,33),(20,32),(21,31),(22,30),(23,29),(24,28)]])

Matrix representation of C12:S4 in GL5(F13)

87000
129000
00100
00010
00001
,
10000
01000
001200
001201
001210
,
10000
01000
000112
001012
000012
,
42000
98000
00010
00001
00100
,
112000
012000
00010
00100
00001

G:=sub<GL(5,GF(13))| [8,12,0,0,0,7,9,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,12,12,12,0,0,0,0,1,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,12,12,12],[4,9,0,0,0,2,8,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[1,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1] >;

C12:S4 in GAP, Magma, Sage, TeX

C_{12}\rtimes S_4
% in TeX

G:=Group("C12:S4");
// GroupNames label

G:=SmallGroup(288,909);
// by ID

G=gap.SmallGroup(288,909);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-3,-2,2,85,36,451,1684,6053,782,3534,1350]);
// Polycyclic

G:=Group<a,b,c,d,e|a^12=b^2=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,d*b*d^-1=e*b*e=b*c=c*b,d*c*d^-1=b,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Character table of C12:S4 in TeX

׿
x
:
Z
F
o
wr
Q
<