Copied to
clipboard

G = C12⋊S4order 288 = 25·32

1st semidirect product of C12 and S4 acting via S4/A4=C2

non-abelian, soluble, monomial

Aliases: C121S4, A41D12, C4⋊(C3⋊S4), C31(C4⋊S4), (C4×A4)⋊1S3, (C3×A4)⋊5D4, (C2×C6)⋊3D12, (C12×A4)⋊1C2, C6.30(C2×S4), (C22×C12)⋊2S3, (C2×A4).10D6, C22⋊(C12⋊S3), (C22×C6).21D6, (C6×A4).15C22, (C2×C3⋊S4)⋊3C2, C2.4(C2×C3⋊S4), C23.3(C2×C3⋊S3), (C22×C4)⋊2(C3⋊S3), SmallGroup(288,909)

Series: Derived Chief Lower central Upper central

C1C22C6×A4 — C12⋊S4
C1C22C2×C6C3×A4C6×A4C2×C3⋊S4 — C12⋊S4
C3×A4C6×A4 — C12⋊S4
C1C2C4

Generators and relations for C12⋊S4
 G = < a,b,c,d,e | a12=b2=c2=d3=e2=1, ab=ba, ac=ca, ad=da, eae=a-1, dbd-1=ebe=bc=cb, dcd-1=b, ce=ec, ede=d-1 >

Subgroups: 1028 in 144 conjugacy classes, 27 normal (16 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, D4, C23, C23, C32, Dic3, C12, C12, A4, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C3⋊S3, C3×C6, D12, C2×Dic3, C3⋊D4, C2×C12, S4, C2×A4, C22×S3, C22×C6, C4⋊D4, C3×C12, C3×A4, C2×C3⋊S3, C4⋊Dic3, D6⋊C4, C4×A4, C2×D12, C2×C3⋊D4, C22×C12, C2×S4, C12⋊S3, C3⋊S4, C6×A4, C127D4, C4⋊S4, C12×A4, C2×C3⋊S4, C12⋊S4
Quotients: C1, C2, C22, S3, D4, D6, C3⋊S3, D12, S4, C2×C3⋊S3, C2×S4, C12⋊S3, C3⋊S4, C4⋊S4, C2×C3⋊S4, C12⋊S4

Character table of C12⋊S4

 class 12A2B2C2D2E3A3B3C3D4A4B4C4D6A6B6C6D6E6F12A12B12C12D12E12F12G12H12I12J
 size 1133363628882636362668882266888888
ρ1111111111111111111111111111111    trivial
ρ21111-1-1111111-1-11111111111111111    linear of order 2
ρ31111-111111-1-1-11111111-1-1-1-1-1-1-1-1-1-1    linear of order 2
ρ411111-11111-1-11-1111111-1-1-1-1-1-1-1-1-1-1    linear of order 2
ρ52222002-1-1-1-2-200222-1-1-1-2-2-2-2111111    orthogonal lifted from D6
ρ6222200-1-12-1-2-200-1-1-12-1-11111-21-2111    orthogonal lifted from D6
ρ7222200-12-1-12200-1-1-1-12-1-1-1-1-1-12-1-12-1    orthogonal lifted from S3
ρ8222200-1-1-122200-1-1-1-1-12-1-1-1-1-1-1-12-12    orthogonal lifted from S3
ρ92-22-20022220000-2-22-2-2-20000000000    orthogonal lifted from D4
ρ10222200-1-12-12200-1-1-12-1-1-1-1-1-12-12-1-1-1    orthogonal lifted from S3
ρ11222200-12-1-1-2-200-1-1-1-12-111111-211-21    orthogonal lifted from D6
ρ122222002-1-1-12200222-1-1-12222-1-1-1-1-1-1    orthogonal lifted from S3
ρ13222200-1-1-12-2-200-1-1-1-1-121111111-21-2    orthogonal lifted from D6
ρ142-22-200-1-12-1000011-1-2113-33-30-3033-3    orthogonal lifted from D12
ρ152-22-2002-1-1-10000-2-2211100003-3-3-333    orthogonal lifted from D12
ρ162-22-200-1-1-12000011-111-2-33-33-3-33030    orthogonal lifted from D12
ρ172-22-200-1-12-1000011-1-211-33-33030-3-33    orthogonal lifted from D12
ρ182-22-200-12-1-1000011-11-21-33-3330-330-3    orthogonal lifted from D12
ρ192-22-2002-1-1-10000-2-221110000-3333-3-3    orthogonal lifted from D12
ρ202-22-200-12-1-1000011-11-213-33-3-303-303    orthogonal lifted from D12
ρ212-22-200-1-1-12000011-111-23-33-333-30-30    orthogonal lifted from D12
ρ2233-1-1-1-130003-1113-1-100033-1-1000000    orthogonal lifted from S4
ρ2333-1-11130003-1-1-13-1-100033-1-1000000    orthogonal lifted from S4
ρ2433-1-1-113000-311-13-1-1000-3-311000000    orthogonal lifted from C2×S4
ρ2533-1-11-13000-31-113-1-1000-3-311000000    orthogonal lifted from C2×S4
ρ2666-2-200-30006-200-311000-3-311000000    orthogonal lifted from C3⋊S4
ρ276-6-220060000000-62-20000000000000    orthogonal lifted from C4⋊S4
ρ2866-2-200-3000-6200-31100033-1-1000000    orthogonal lifted from C2×C3⋊S4
ρ296-6-2200-300000003-11000-33333-3000000    orthogonal faithful
ρ306-6-2200-300000003-1100033-33-33000000    orthogonal faithful

Smallest permutation representation of C12⋊S4
On 36 points
Generators in S36
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)
(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)
(1 29 23)(2 30 24)(3 31 13)(4 32 14)(5 33 15)(6 34 16)(7 35 17)(8 36 18)(9 25 19)(10 26 20)(11 27 21)(12 28 22)
(2 12)(3 11)(4 10)(5 9)(6 8)(13 27)(14 26)(15 25)(16 36)(17 35)(18 34)(19 33)(20 32)(21 31)(22 30)(23 29)(24 28)

G:=sub<Sym(36)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (1,29,23)(2,30,24)(3,31,13)(4,32,14)(5,33,15)(6,34,16)(7,35,17)(8,36,18)(9,25,19)(10,26,20)(11,27,21)(12,28,22), (2,12)(3,11)(4,10)(5,9)(6,8)(13,27)(14,26)(15,25)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,30)(23,29)(24,28)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (1,29,23)(2,30,24)(3,31,13)(4,32,14)(5,33,15)(6,34,16)(7,35,17)(8,36,18)(9,25,19)(10,26,20)(11,27,21)(12,28,22), (2,12)(3,11)(4,10)(5,9)(6,8)(13,27)(14,26)(15,25)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,30)(23,29)(24,28) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36)], [(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36)], [(1,29,23),(2,30,24),(3,31,13),(4,32,14),(5,33,15),(6,34,16),(7,35,17),(8,36,18),(9,25,19),(10,26,20),(11,27,21),(12,28,22)], [(2,12),(3,11),(4,10),(5,9),(6,8),(13,27),(14,26),(15,25),(16,36),(17,35),(18,34),(19,33),(20,32),(21,31),(22,30),(23,29),(24,28)]])

Matrix representation of C12⋊S4 in GL5(𝔽13)

87000
129000
00100
00010
00001
,
10000
01000
001200
001201
001210
,
10000
01000
000112
001012
000012
,
42000
98000
00010
00001
00100
,
112000
012000
00010
00100
00001

G:=sub<GL(5,GF(13))| [8,12,0,0,0,7,9,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,12,12,12,0,0,0,0,1,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,12,12,12],[4,9,0,0,0,2,8,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[1,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1] >;

C12⋊S4 in GAP, Magma, Sage, TeX

C_{12}\rtimes S_4
% in TeX

G:=Group("C12:S4");
// GroupNames label

G:=SmallGroup(288,909);
// by ID

G=gap.SmallGroup(288,909);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-3,-2,2,85,36,451,1684,6053,782,3534,1350]);
// Polycyclic

G:=Group<a,b,c,d,e|a^12=b^2=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,d*b*d^-1=e*b*e=b*c=c*b,d*c*d^-1=b,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Character table of C12⋊S4 in TeX

׿
×
𝔽