non-abelian, soluble, monomial
Aliases: C12:1S4, A4:1D12, C4:(C3:S4), C3:1(C4:S4), (C4xA4):1S3, (C3xA4):5D4, (C2xC6):3D12, (C12xA4):1C2, C6.30(C2xS4), (C22xC12):2S3, (C2xA4).10D6, C22:(C12:S3), (C22xC6).21D6, (C6xA4).15C22, (C2xC3:S4):3C2, C2.4(C2xC3:S4), C23.3(C2xC3:S3), (C22xC4):2(C3:S3), SmallGroup(288,909)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C12:S4
G = < a,b,c,d,e | a12=b2=c2=d3=e2=1, ab=ba, ac=ca, ad=da, eae=a-1, dbd-1=ebe=bc=cb, dcd-1=b, ce=ec, ede=d-1 >
Subgroups: 1028 in 144 conjugacy classes, 27 normal (16 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, D4, C23, C23, C32, Dic3, C12, C12, A4, D6, C2xC6, C2xC6, C22:C4, C4:C4, C22xC4, C2xD4, C3:S3, C3xC6, D12, C2xDic3, C3:D4, C2xC12, S4, C2xA4, C22xS3, C22xC6, C4:D4, C3xC12, C3xA4, C2xC3:S3, C4:Dic3, D6:C4, C4xA4, C2xD12, C2xC3:D4, C22xC12, C2xS4, C12:S3, C3:S4, C6xA4, C12:7D4, C4:S4, C12xA4, C2xC3:S4, C12:S4
Quotients: C1, C2, C22, S3, D4, D6, C3:S3, D12, S4, C2xC3:S3, C2xS4, C12:S3, C3:S4, C4:S4, C2xC3:S4, C12:S4
Character table of C12:S4
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | 3D | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 12I | 12J | |
size | 1 | 1 | 3 | 3 | 36 | 36 | 2 | 8 | 8 | 8 | 2 | 6 | 36 | 36 | 2 | 6 | 6 | 8 | 8 | 8 | 2 | 2 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -1 | -2 | -2 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -2 | -2 | -2 | -2 | 1 | 1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ6 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | 2 | -1 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | 1 | 1 | 1 | 1 | -2 | 1 | -2 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ7 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | orthogonal lifted from S3 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | 2 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -1 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | -1 | 1 | 1 | 1 | 1 | 1 | -2 | 1 | 1 | -2 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -2 | 1 | -2 | orthogonal lifted from D6 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -2 | 1 | 1 | √3 | -√3 | √3 | -√3 | 0 | -√3 | 0 | √3 | √3 | -√3 | orthogonal lifted from D12 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | √3 | -√3 | -√3 | -√3 | √3 | √3 | orthogonal lifted from D12 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | 1 | -2 | -√3 | √3 | -√3 | √3 | -√3 | -√3 | √3 | 0 | √3 | 0 | orthogonal lifted from D12 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -2 | 1 | 1 | -√3 | √3 | -√3 | √3 | 0 | √3 | 0 | -√3 | -√3 | √3 | orthogonal lifted from D12 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | -2 | 1 | -√3 | √3 | -√3 | √3 | √3 | 0 | -√3 | √3 | 0 | -√3 | orthogonal lifted from D12 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | -√3 | √3 | √3 | √3 | -√3 | -√3 | orthogonal lifted from D12 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | -2 | 1 | √3 | -√3 | √3 | -√3 | -√3 | 0 | √3 | -√3 | 0 | √3 | orthogonal lifted from D12 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | 1 | -2 | √3 | -√3 | √3 | -√3 | √3 | √3 | -√3 | 0 | -√3 | 0 | orthogonal lifted from D12 |
ρ22 | 3 | 3 | -1 | -1 | -1 | -1 | 3 | 0 | 0 | 0 | 3 | -1 | 1 | 1 | 3 | -1 | -1 | 0 | 0 | 0 | 3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ23 | 3 | 3 | -1 | -1 | 1 | 1 | 3 | 0 | 0 | 0 | 3 | -1 | -1 | -1 | 3 | -1 | -1 | 0 | 0 | 0 | 3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ24 | 3 | 3 | -1 | -1 | -1 | 1 | 3 | 0 | 0 | 0 | -3 | 1 | 1 | -1 | 3 | -1 | -1 | 0 | 0 | 0 | -3 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2xS4 |
ρ25 | 3 | 3 | -1 | -1 | 1 | -1 | 3 | 0 | 0 | 0 | -3 | 1 | -1 | 1 | 3 | -1 | -1 | 0 | 0 | 0 | -3 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2xS4 |
ρ26 | 6 | 6 | -2 | -2 | 0 | 0 | -3 | 0 | 0 | 0 | 6 | -2 | 0 | 0 | -3 | 1 | 1 | 0 | 0 | 0 | -3 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C3:S4 |
ρ27 | 6 | -6 | -2 | 2 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -6 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C4:S4 |
ρ28 | 6 | 6 | -2 | -2 | 0 | 0 | -3 | 0 | 0 | 0 | -6 | 2 | 0 | 0 | -3 | 1 | 1 | 0 | 0 | 0 | 3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2xC3:S4 |
ρ29 | 6 | -6 | -2 | 2 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | -1 | 1 | 0 | 0 | 0 | -3√3 | 3√3 | √3 | -√3 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ30 | 6 | -6 | -2 | 2 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | -1 | 1 | 0 | 0 | 0 | 3√3 | -3√3 | -√3 | √3 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)
(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)
(1 29 23)(2 30 24)(3 31 13)(4 32 14)(5 33 15)(6 34 16)(7 35 17)(8 36 18)(9 25 19)(10 26 20)(11 27 21)(12 28 22)
(2 12)(3 11)(4 10)(5 9)(6 8)(13 27)(14 26)(15 25)(16 36)(17 35)(18 34)(19 33)(20 32)(21 31)(22 30)(23 29)(24 28)
G:=sub<Sym(36)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (1,29,23)(2,30,24)(3,31,13)(4,32,14)(5,33,15)(6,34,16)(7,35,17)(8,36,18)(9,25,19)(10,26,20)(11,27,21)(12,28,22), (2,12)(3,11)(4,10)(5,9)(6,8)(13,27)(14,26)(15,25)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,30)(23,29)(24,28)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (1,29,23)(2,30,24)(3,31,13)(4,32,14)(5,33,15)(6,34,16)(7,35,17)(8,36,18)(9,25,19)(10,26,20)(11,27,21)(12,28,22), (2,12)(3,11)(4,10)(5,9)(6,8)(13,27)(14,26)(15,25)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,30)(23,29)(24,28) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36)], [(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36)], [(1,29,23),(2,30,24),(3,31,13),(4,32,14),(5,33,15),(6,34,16),(7,35,17),(8,36,18),(9,25,19),(10,26,20),(11,27,21),(12,28,22)], [(2,12),(3,11),(4,10),(5,9),(6,8),(13,27),(14,26),(15,25),(16,36),(17,35),(18,34),(19,33),(20,32),(21,31),(22,30),(23,29),(24,28)]])
Matrix representation of C12:S4 ►in GL5(F13)
8 | 7 | 0 | 0 | 0 |
12 | 9 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 | 1 |
0 | 0 | 12 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 12 |
0 | 0 | 1 | 0 | 12 |
0 | 0 | 0 | 0 | 12 |
4 | 2 | 0 | 0 | 0 |
9 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 |
1 | 12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(13))| [8,12,0,0,0,7,9,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,12,12,12,0,0,0,0,1,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,12,12,12],[4,9,0,0,0,2,8,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[1,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1] >;
C12:S4 in GAP, Magma, Sage, TeX
C_{12}\rtimes S_4
% in TeX
G:=Group("C12:S4");
// GroupNames label
G:=SmallGroup(288,909);
// by ID
G=gap.SmallGroup(288,909);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-3,-2,2,85,36,451,1684,6053,782,3534,1350]);
// Polycyclic
G:=Group<a,b,c,d,e|a^12=b^2=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,d*b*d^-1=e*b*e=b*c=c*b,d*c*d^-1=b,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export