extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C6×Q8) = C12×Dic6 | φ: C6×Q8/C2×C12 → C2 ⊆ Aut C6 | 96 | | C6.1(C6xQ8) | 288,639 |
C6.2(C6×Q8) = C3×C12⋊2Q8 | φ: C6×Q8/C2×C12 → C2 ⊆ Aut C6 | 96 | | C6.2(C6xQ8) | 288,640 |
C6.3(C6×Q8) = C3×C12.6Q8 | φ: C6×Q8/C2×C12 → C2 ⊆ Aut C6 | 96 | | C6.3(C6xQ8) | 288,641 |
C6.4(C6×Q8) = C3×Dic3.D4 | φ: C6×Q8/C2×C12 → C2 ⊆ Aut C6 | 48 | | C6.4(C6xQ8) | 288,649 |
C6.5(C6×Q8) = C3×C4.Dic6 | φ: C6×Q8/C2×C12 → C2 ⊆ Aut C6 | 96 | | C6.5(C6xQ8) | 288,661 |
C6.6(C6×Q8) = C6×Dic3⋊C4 | φ: C6×Q8/C2×C12 → C2 ⊆ Aut C6 | 96 | | C6.6(C6xQ8) | 288,694 |
C6.7(C6×Q8) = C3×C12.48D4 | φ: C6×Q8/C2×C12 → C2 ⊆ Aut C6 | 48 | | C6.7(C6xQ8) | 288,695 |
C6.8(C6×Q8) = C6×C4⋊Dic3 | φ: C6×Q8/C2×C12 → C2 ⊆ Aut C6 | 96 | | C6.8(C6xQ8) | 288,696 |
C6.9(C6×Q8) = C3×Dic6⋊C4 | φ: C6×Q8/C3×Q8 → C2 ⊆ Aut C6 | 96 | | C6.9(C6xQ8) | 288,658 |
C6.10(C6×Q8) = C3×C12⋊Q8 | φ: C6×Q8/C3×Q8 → C2 ⊆ Aut C6 | 96 | | C6.10(C6xQ8) | 288,659 |
C6.11(C6×Q8) = C3×Dic3.Q8 | φ: C6×Q8/C3×Q8 → C2 ⊆ Aut C6 | 96 | | C6.11(C6xQ8) | 288,660 |
C6.12(C6×Q8) = C3×S3×C4⋊C4 | φ: C6×Q8/C3×Q8 → C2 ⊆ Aut C6 | 96 | | C6.12(C6xQ8) | 288,662 |
C6.13(C6×Q8) = C3×D6⋊Q8 | φ: C6×Q8/C3×Q8 → C2 ⊆ Aut C6 | 96 | | C6.13(C6xQ8) | 288,667 |
C6.14(C6×Q8) = C3×C4.D12 | φ: C6×Q8/C3×Q8 → C2 ⊆ Aut C6 | 96 | | C6.14(C6xQ8) | 288,668 |
C6.15(C6×Q8) = C3×Dic3⋊Q8 | φ: C6×Q8/C3×Q8 → C2 ⊆ Aut C6 | 96 | | C6.15(C6xQ8) | 288,715 |
C6.16(C6×Q8) = C3×Q8×Dic3 | φ: C6×Q8/C3×Q8 → C2 ⊆ Aut C6 | 96 | | C6.16(C6xQ8) | 288,716 |
C6.17(C6×Q8) = C3×D6⋊3Q8 | φ: C6×Q8/C3×Q8 → C2 ⊆ Aut C6 | 96 | | C6.17(C6xQ8) | 288,717 |
C6.18(C6×Q8) = C4⋊C4×C18 | central extension (φ=1) | 288 | | C6.18(C6xQ8) | 288,166 |
C6.19(C6×Q8) = Q8×C36 | central extension (φ=1) | 288 | | C6.19(C6xQ8) | 288,169 |
C6.20(C6×Q8) = C9×C22⋊Q8 | central extension (φ=1) | 144 | | C6.20(C6xQ8) | 288,172 |
C6.21(C6×Q8) = C9×C42.C2 | central extension (φ=1) | 288 | | C6.21(C6xQ8) | 288,175 |
C6.22(C6×Q8) = C9×C4⋊Q8 | central extension (φ=1) | 288 | | C6.22(C6xQ8) | 288,178 |
C6.23(C6×Q8) = Q8×C2×C18 | central extension (φ=1) | 288 | | C6.23(C6xQ8) | 288,369 |
C6.24(C6×Q8) = C4⋊C4×C3×C6 | central extension (φ=1) | 288 | | C6.24(C6xQ8) | 288,813 |
C6.25(C6×Q8) = Q8×C3×C12 | central extension (φ=1) | 288 | | C6.25(C6xQ8) | 288,816 |
C6.26(C6×Q8) = C32×C22⋊Q8 | central extension (φ=1) | 144 | | C6.26(C6xQ8) | 288,819 |
C6.27(C6×Q8) = C32×C42.C2 | central extension (φ=1) | 288 | | C6.27(C6xQ8) | 288,822 |
C6.28(C6×Q8) = C32×C4⋊Q8 | central extension (φ=1) | 288 | | C6.28(C6xQ8) | 288,825 |