Copied to
clipboard

G = C2xC6xDic6order 288 = 25·32

Direct product of C2xC6 and Dic6

direct product, metabelian, supersoluble, monomial

Aliases: C2xC6xDic6, C62:11Q8, C62.265C23, C6:1(C6xQ8), C6.1(C23xC6), (C2xC12).449D6, C32:6(C22xQ8), C23.43(S3xC6), C6.69(S3xC23), (C3xC6).38C24, (C22xC12).43S3, C12.34(C22xC6), (C22xC12).21C6, (C22xC6).174D6, (C6xC12).327C22, (C3xC12).166C23, C12.221(C22xS3), (C22xDic3).7C6, Dic3.1(C22xC6), (C2xC62).115C22, (C3xDic3).28C23, (C6xDic3).162C22, C3:1(Q8xC2xC6), C4.32(S3xC2xC6), (C3xC6):5(C2xQ8), (C2xC6):6(C3xQ8), (C2xC6xC12).17C2, C2.3(S3xC22xC6), (C2xC4).86(S3xC6), C22.28(S3xC2xC6), (Dic3xC2xC6).13C2, (C2xC12).111(C2xC6), (C2xC6).67(C22xC6), (C22xC6).68(C2xC6), (C22xC4).12(C3xS3), (C2xC6).345(C22xS3), (C2xDic3).43(C2xC6), SmallGroup(288,988)

Series: Derived Chief Lower central Upper central

C1C6 — C2xC6xDic6
C1C3C6C3xC6C3xDic3C6xDic3Dic3xC2xC6 — C2xC6xDic6
C3C6 — C2xC6xDic6
C1C22xC6C22xC12

Generators and relations for C2xC6xDic6
 G = < a,b,c,d | a2=b6=c12=1, d2=c6, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 570 in 339 conjugacy classes, 210 normal (18 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C6, C6, C6, C2xC4, C2xC4, Q8, C23, C32, Dic3, C12, C12, C2xC6, C2xC6, C22xC4, C22xC4, C2xQ8, C3xC6, C3xC6, Dic6, C2xDic3, C2xC12, C2xC12, C3xQ8, C22xC6, C22xC6, C22xQ8, C3xDic3, C3xC12, C62, C2xDic6, C22xDic3, C22xC12, C22xC12, C6xQ8, C3xDic6, C6xDic3, C6xC12, C2xC62, C22xDic6, Q8xC2xC6, C6xDic6, Dic3xC2xC6, C2xC6xC12, C2xC6xDic6
Quotients: C1, C2, C3, C22, S3, C6, Q8, C23, D6, C2xC6, C2xQ8, C24, C3xS3, Dic6, C3xQ8, C22xS3, C22xC6, C22xQ8, S3xC6, C2xDic6, C6xQ8, S3xC23, C23xC6, C3xDic6, S3xC2xC6, C22xDic6, Q8xC2xC6, C6xDic6, S3xC22xC6, C2xC6xDic6

Smallest permutation representation of C2xC6xDic6
On 96 points
Generators in S96
(1 89)(2 90)(3 91)(4 92)(5 93)(6 94)(7 95)(8 96)(9 85)(10 86)(11 87)(12 88)(13 84)(14 73)(15 74)(16 75)(17 76)(18 77)(19 78)(20 79)(21 80)(22 81)(23 82)(24 83)(25 52)(26 53)(27 54)(28 55)(29 56)(30 57)(31 58)(32 59)(33 60)(34 49)(35 50)(36 51)(37 61)(38 62)(39 63)(40 64)(41 65)(42 66)(43 67)(44 68)(45 69)(46 70)(47 71)(48 72)
(1 32 9 28 5 36)(2 33 10 29 6 25)(3 34 11 30 7 26)(4 35 12 31 8 27)(13 71 17 63 21 67)(14 72 18 64 22 68)(15 61 19 65 23 69)(16 62 20 66 24 70)(37 78 41 82 45 74)(38 79 42 83 46 75)(39 80 43 84 47 76)(40 81 44 73 48 77)(49 87 57 95 53 91)(50 88 58 96 54 92)(51 89 59 85 55 93)(52 90 60 86 56 94)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 72 7 66)(2 71 8 65)(3 70 9 64)(4 69 10 63)(5 68 11 62)(6 67 12 61)(13 31 19 25)(14 30 20 36)(15 29 21 35)(16 28 22 34)(17 27 23 33)(18 26 24 32)(37 94 43 88)(38 93 44 87)(39 92 45 86)(40 91 46 85)(41 90 47 96)(42 89 48 95)(49 75 55 81)(50 74 56 80)(51 73 57 79)(52 84 58 78)(53 83 59 77)(54 82 60 76)

G:=sub<Sym(96)| (1,89)(2,90)(3,91)(4,92)(5,93)(6,94)(7,95)(8,96)(9,85)(10,86)(11,87)(12,88)(13,84)(14,73)(15,74)(16,75)(17,76)(18,77)(19,78)(20,79)(21,80)(22,81)(23,82)(24,83)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,49)(35,50)(36,51)(37,61)(38,62)(39,63)(40,64)(41,65)(42,66)(43,67)(44,68)(45,69)(46,70)(47,71)(48,72), (1,32,9,28,5,36)(2,33,10,29,6,25)(3,34,11,30,7,26)(4,35,12,31,8,27)(13,71,17,63,21,67)(14,72,18,64,22,68)(15,61,19,65,23,69)(16,62,20,66,24,70)(37,78,41,82,45,74)(38,79,42,83,46,75)(39,80,43,84,47,76)(40,81,44,73,48,77)(49,87,57,95,53,91)(50,88,58,96,54,92)(51,89,59,85,55,93)(52,90,60,86,56,94), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,72,7,66)(2,71,8,65)(3,70,9,64)(4,69,10,63)(5,68,11,62)(6,67,12,61)(13,31,19,25)(14,30,20,36)(15,29,21,35)(16,28,22,34)(17,27,23,33)(18,26,24,32)(37,94,43,88)(38,93,44,87)(39,92,45,86)(40,91,46,85)(41,90,47,96)(42,89,48,95)(49,75,55,81)(50,74,56,80)(51,73,57,79)(52,84,58,78)(53,83,59,77)(54,82,60,76)>;

G:=Group( (1,89)(2,90)(3,91)(4,92)(5,93)(6,94)(7,95)(8,96)(9,85)(10,86)(11,87)(12,88)(13,84)(14,73)(15,74)(16,75)(17,76)(18,77)(19,78)(20,79)(21,80)(22,81)(23,82)(24,83)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,49)(35,50)(36,51)(37,61)(38,62)(39,63)(40,64)(41,65)(42,66)(43,67)(44,68)(45,69)(46,70)(47,71)(48,72), (1,32,9,28,5,36)(2,33,10,29,6,25)(3,34,11,30,7,26)(4,35,12,31,8,27)(13,71,17,63,21,67)(14,72,18,64,22,68)(15,61,19,65,23,69)(16,62,20,66,24,70)(37,78,41,82,45,74)(38,79,42,83,46,75)(39,80,43,84,47,76)(40,81,44,73,48,77)(49,87,57,95,53,91)(50,88,58,96,54,92)(51,89,59,85,55,93)(52,90,60,86,56,94), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,72,7,66)(2,71,8,65)(3,70,9,64)(4,69,10,63)(5,68,11,62)(6,67,12,61)(13,31,19,25)(14,30,20,36)(15,29,21,35)(16,28,22,34)(17,27,23,33)(18,26,24,32)(37,94,43,88)(38,93,44,87)(39,92,45,86)(40,91,46,85)(41,90,47,96)(42,89,48,95)(49,75,55,81)(50,74,56,80)(51,73,57,79)(52,84,58,78)(53,83,59,77)(54,82,60,76) );

G=PermutationGroup([[(1,89),(2,90),(3,91),(4,92),(5,93),(6,94),(7,95),(8,96),(9,85),(10,86),(11,87),(12,88),(13,84),(14,73),(15,74),(16,75),(17,76),(18,77),(19,78),(20,79),(21,80),(22,81),(23,82),(24,83),(25,52),(26,53),(27,54),(28,55),(29,56),(30,57),(31,58),(32,59),(33,60),(34,49),(35,50),(36,51),(37,61),(38,62),(39,63),(40,64),(41,65),(42,66),(43,67),(44,68),(45,69),(46,70),(47,71),(48,72)], [(1,32,9,28,5,36),(2,33,10,29,6,25),(3,34,11,30,7,26),(4,35,12,31,8,27),(13,71,17,63,21,67),(14,72,18,64,22,68),(15,61,19,65,23,69),(16,62,20,66,24,70),(37,78,41,82,45,74),(38,79,42,83,46,75),(39,80,43,84,47,76),(40,81,44,73,48,77),(49,87,57,95,53,91),(50,88,58,96,54,92),(51,89,59,85,55,93),(52,90,60,86,56,94)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,72,7,66),(2,71,8,65),(3,70,9,64),(4,69,10,63),(5,68,11,62),(6,67,12,61),(13,31,19,25),(14,30,20,36),(15,29,21,35),(16,28,22,34),(17,27,23,33),(18,26,24,32),(37,94,43,88),(38,93,44,87),(39,92,45,86),(40,91,46,85),(41,90,47,96),(42,89,48,95),(49,75,55,81),(50,74,56,80),(51,73,57,79),(52,84,58,78),(53,83,59,77),(54,82,60,76)]])

108 conjugacy classes

class 1 2A···2G3A3B3C3D3E4A4B4C4D4E···4L6A···6N6O···6AI12A···12AF12AG···12AV
order12···23333344444···46···66···612···1212···12
size11···11122222226···61···12···22···26···6

108 irreducible representations

dim111111112222222222
type+++++-++-
imageC1C2C2C2C3C6C6C6S3Q8D6D6C3xS3Dic6C3xQ8S3xC6S3xC6C3xDic6
kernelC2xC6xDic6C6xDic6Dic3xC2xC6C2xC6xC12C22xDic6C2xDic6C22xDic3C22xC12C22xC12C62C2xC12C22xC6C22xC4C2xC6C2xC6C2xC4C23C22
# reps1122122442146128812216

Matrix representation of C2xC6xDic6 in GL5(F13)

10000
012000
001200
00010
00001
,
100000
03000
00300
000120
000012
,
10000
010000
00400
0001211
00011
,
120000
001200
012000
00050
00088

G:=sub<GL(5,GF(13))| [1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,1],[10,0,0,0,0,0,3,0,0,0,0,0,3,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,10,0,0,0,0,0,4,0,0,0,0,0,12,1,0,0,0,11,1],[12,0,0,0,0,0,0,12,0,0,0,12,0,0,0,0,0,0,5,8,0,0,0,0,8] >;

C2xC6xDic6 in GAP, Magma, Sage, TeX

C_2\times C_6\times {\rm Dic}_6
% in TeX

G:=Group("C2xC6xDic6");
// GroupNames label

G:=SmallGroup(288,988);
// by ID

G=gap.SmallGroup(288,988);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-3,336,1571,192,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^6=c^12=1,d^2=c^6,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<