extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×C4○D4)⋊1S3 = C12.14S4 | φ: S3/C1 → S3 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4):1S3 | 288,914 |
(C3×C4○D4)⋊2S3 = C12.7S4 | φ: S3/C1 → S3 ⊆ Out C3×C4○D4 | 48 | 4+ | (C3xC4oD4):2S3 | 288,915 |
(C3×C4○D4)⋊3S3 = C3×C4.6S4 | φ: S3/C1 → S3 ⊆ Out C3×C4○D4 | 48 | 2 | (C3xC4oD4):3S3 | 288,903 |
(C3×C4○D4)⋊4S3 = C3×C4.3S4 | φ: S3/C1 → S3 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4):4S3 | 288,904 |
(C3×C4○D4)⋊5S3 = C62.73D4 | φ: S3/C3 → C2 ⊆ Out C3×C4○D4 | 72 | | (C3xC4oD4):5S3 | 288,806 |
(C3×C4○D4)⋊6S3 = C62.74D4 | φ: S3/C3 → C2 ⊆ Out C3×C4○D4 | 144 | | (C3xC4oD4):6S3 | 288,807 |
(C3×C4○D4)⋊7S3 = C4○D4×C3⋊S3 | φ: S3/C3 → C2 ⊆ Out C3×C4○D4 | 72 | | (C3xC4oD4):7S3 | 288,1013 |
(C3×C4○D4)⋊8S3 = C62.154C23 | φ: S3/C3 → C2 ⊆ Out C3×C4○D4 | 72 | | (C3xC4oD4):8S3 | 288,1014 |
(C3×C4○D4)⋊9S3 = C32⋊92- 1+4 | φ: S3/C3 → C2 ⊆ Out C3×C4○D4 | 144 | | (C3xC4oD4):9S3 | 288,1015 |
(C3×C4○D4)⋊10S3 = C3×D4⋊D6 | φ: S3/C3 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4):10S3 | 288,720 |
(C3×C4○D4)⋊11S3 = C3×Q8.13D6 | φ: S3/C3 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4):11S3 | 288,721 |
(C3×C4○D4)⋊12S3 = C3×D4○D12 | φ: S3/C3 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4):12S3 | 288,999 |
(C3×C4○D4)⋊13S3 = C3×Q8○D12 | φ: S3/C3 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4):13S3 | 288,1000 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×C4○D4).1S3 = C12.9S4 | φ: S3/C1 → S3 ⊆ Out C3×C4○D4 | 72 | 4 | (C3xC4oD4).1S3 | 288,70 |
(C3×C4○D4).2S3 = C12.3S4 | φ: S3/C1 → S3 ⊆ Out C3×C4○D4 | 144 | 4- | (C3xC4oD4).2S3 | 288,338 |
(C3×C4○D4).3S3 = C12.11S4 | φ: S3/C1 → S3 ⊆ Out C3×C4○D4 | 144 | 4 | (C3xC4oD4).3S3 | 288,339 |
(C3×C4○D4).4S3 = C12.4S4 | φ: S3/C1 → S3 ⊆ Out C3×C4○D4 | 72 | 4+ | (C3xC4oD4).4S3 | 288,340 |
(C3×C4○D4).5S3 = C3⋊U2(𝔽3) | φ: S3/C1 → S3 ⊆ Out C3×C4○D4 | 72 | 4 | (C3xC4oD4).5S3 | 288,404 |
(C3×C4○D4).6S3 = C12.6S4 | φ: S3/C1 → S3 ⊆ Out C3×C4○D4 | 96 | 4- | (C3xC4oD4).6S3 | 288,913 |
(C3×C4○D4).7S3 = C3×U2(𝔽3) | φ: S3/C1 → S3 ⊆ Out C3×C4○D4 | 72 | 2 | (C3xC4oD4).7S3 | 288,400 |
(C3×C4○D4).8S3 = C3×C4.S4 | φ: S3/C1 → S3 ⊆ Out C3×C4○D4 | 96 | 4 | (C3xC4oD4).8S3 | 288,902 |
(C3×C4○D4).9S3 = Q8⋊3Dic9 | φ: S3/C3 → C2 ⊆ Out C3×C4○D4 | 72 | 4 | (C3xC4oD4).9S3 | 288,44 |
(C3×C4○D4).10S3 = D4.Dic9 | φ: S3/C3 → C2 ⊆ Out C3×C4○D4 | 144 | 4 | (C3xC4oD4).10S3 | 288,158 |
(C3×C4○D4).11S3 = D4.D18 | φ: S3/C3 → C2 ⊆ Out C3×C4○D4 | 144 | 4- | (C3xC4oD4).11S3 | 288,159 |
(C3×C4○D4).12S3 = D4⋊D18 | φ: S3/C3 → C2 ⊆ Out C3×C4○D4 | 72 | 4+ | (C3xC4oD4).12S3 | 288,160 |
(C3×C4○D4).13S3 = D4.9D18 | φ: S3/C3 → C2 ⊆ Out C3×C4○D4 | 144 | 4 | (C3xC4oD4).13S3 | 288,161 |
(C3×C4○D4).14S3 = C62.39D4 | φ: S3/C3 → C2 ⊆ Out C3×C4○D4 | 72 | | (C3xC4oD4).14S3 | 288,312 |
(C3×C4○D4).15S3 = C4○D4×D9 | φ: S3/C3 → C2 ⊆ Out C3×C4○D4 | 72 | 4 | (C3xC4oD4).15S3 | 288,362 |
(C3×C4○D4).16S3 = D4⋊8D18 | φ: S3/C3 → C2 ⊆ Out C3×C4○D4 | 72 | 4+ | (C3xC4oD4).16S3 | 288,363 |
(C3×C4○D4).17S3 = D4.10D18 | φ: S3/C3 → C2 ⊆ Out C3×C4○D4 | 144 | 4- | (C3xC4oD4).17S3 | 288,364 |
(C3×C4○D4).18S3 = D4.(C3⋊Dic3) | φ: S3/C3 → C2 ⊆ Out C3×C4○D4 | 144 | | (C3xC4oD4).18S3 | 288,805 |
(C3×C4○D4).19S3 = C62.75D4 | φ: S3/C3 → C2 ⊆ Out C3×C4○D4 | 144 | | (C3xC4oD4).19S3 | 288,808 |
(C3×C4○D4).20S3 = C3×Q8⋊3Dic3 | φ: S3/C3 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).20S3 | 288,271 |
(C3×C4○D4).21S3 = C3×Q8.14D6 | φ: S3/C3 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).21S3 | 288,722 |
(C3×C4○D4).22S3 = C3×D4.Dic3 | φ: trivial image | 48 | 4 | (C3xC4oD4).22S3 | 288,719 |