Extensions 1→N→G→Q→1 with N=Q8xC18 and Q=C2

Direct product G=NxQ with N=Q8xC18 and Q=C2
dρLabelID
Q8xC2xC18288Q8xC2xC18288,369

Semidirect products G=N:Q with N=Q8xC18 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8xC18):1C2 = C2xQ8:2D9φ: C2/C1C2 ⊆ Out Q8xC18144(Q8xC18):1C2288,152
(Q8xC18):2C2 = C36.C23φ: C2/C1C2 ⊆ Out Q8xC181444(Q8xC18):2C2288,153
(Q8xC18):3C2 = D18:3Q8φ: C2/C1C2 ⊆ Out Q8xC18144(Q8xC18):3C2288,156
(Q8xC18):4C2 = C36.23D4φ: C2/C1C2 ⊆ Out Q8xC18144(Q8xC18):4C2288,157
(Q8xC18):5C2 = C2xQ8xD9φ: C2/C1C2 ⊆ Out Q8xC18144(Q8xC18):5C2288,359
(Q8xC18):6C2 = C2xQ8:3D9φ: C2/C1C2 ⊆ Out Q8xC18144(Q8xC18):6C2288,360
(Q8xC18):7C2 = Q8.15D18φ: C2/C1C2 ⊆ Out Q8xC181444(Q8xC18):7C2288,361
(Q8xC18):8C2 = C9xC22:Q8φ: C2/C1C2 ⊆ Out Q8xC18144(Q8xC18):8C2288,172
(Q8xC18):9C2 = C9xC4.4D4φ: C2/C1C2 ⊆ Out Q8xC18144(Q8xC18):9C2288,174
(Q8xC18):10C2 = SD16xC18φ: C2/C1C2 ⊆ Out Q8xC18144(Q8xC18):10C2288,183
(Q8xC18):11C2 = C9xC8.C22φ: C2/C1C2 ⊆ Out Q8xC181444(Q8xC18):11C2288,187
(Q8xC18):12C2 = C9x2- 1+4φ: C2/C1C2 ⊆ Out Q8xC181444(Q8xC18):12C2288,372
(Q8xC18):13C2 = C4oD4xC18φ: trivial image144(Q8xC18):13C2288,370

Non-split extensions G=N.Q with N=Q8xC18 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8xC18).1C2 = C36.9D4φ: C2/C1C2 ⊆ Out Q8xC181444(Q8xC18).1C2288,42
(Q8xC18).2C2 = Q8:2Dic9φ: C2/C1C2 ⊆ Out Q8xC18288(Q8xC18).2C2288,43
(Q8xC18).3C2 = C2xC9:Q16φ: C2/C1C2 ⊆ Out Q8xC18288(Q8xC18).3C2288,151
(Q8xC18).4C2 = Dic9:Q8φ: C2/C1C2 ⊆ Out Q8xC18288(Q8xC18).4C2288,154
(Q8xC18).5C2 = Q8xDic9φ: C2/C1C2 ⊆ Out Q8xC18288(Q8xC18).5C2288,155
(Q8xC18).6C2 = C9xC4.10D4φ: C2/C1C2 ⊆ Out Q8xC181444(Q8xC18).6C2288,51
(Q8xC18).7C2 = C9xQ8:C4φ: C2/C1C2 ⊆ Out Q8xC18288(Q8xC18).7C2288,53
(Q8xC18).8C2 = C9xC4:Q8φ: C2/C1C2 ⊆ Out Q8xC18288(Q8xC18).8C2288,178
(Q8xC18).9C2 = Q16xC18φ: C2/C1C2 ⊆ Out Q8xC18288(Q8xC18).9C2288,184
(Q8xC18).10C2 = Q8xC36φ: trivial image288(Q8xC18).10C2288,169

׿
x
:
Z
F
o
wr
Q
<