direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C9×C4.4D4, C42⋊8C18, C36.40D4, C4.4(D4×C9), (C4×C36)⋊12C2, (C2×Q8)⋊4C18, (Q8×C18)⋊9C2, C2.8(D4×C18), C6.71(C6×D4), C22⋊C4⋊5C18, (C4×C12).18C6, (C2×D4).5C18, (C6×D4).12C6, C18.71(C2×D4), C12.39(C3×D4), (C6×Q8).17C6, (D4×C18).12C2, C23.4(C2×C18), C18.44(C4○D4), (C2×C18).79C23, (C2×C36).80C22, (C22×C18).2C22, C22.14(C22×C18), C2.7(C9×C4○D4), C3.(C3×C4.4D4), C6.44(C3×C4○D4), (C3×C4.4D4).C3, (C9×C22⋊C4)⋊13C2, (C2×C12).83(C2×C6), (C2×C4).20(C2×C18), (C3×C22⋊C4).9C6, (C22×C6).7(C2×C6), (C2×C6).84(C22×C6), SmallGroup(288,174)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C9×C4.4D4
G = < a,b,c,d | a9=b4=c4=1, d2=b2, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=b2c-1 >
Subgroups: 174 in 114 conjugacy classes, 66 normal (24 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C6, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C9, C12, C12, C2×C6, C2×C6, C42, C22⋊C4, C2×D4, C2×Q8, C18, C18, C18, C2×C12, C2×C12, C3×D4, C3×Q8, C22×C6, C4.4D4, C36, C36, C2×C18, C2×C18, C4×C12, C3×C22⋊C4, C6×D4, C6×Q8, C2×C36, C2×C36, D4×C9, Q8×C9, C22×C18, C3×C4.4D4, C4×C36, C9×C22⋊C4, D4×C18, Q8×C18, C9×C4.4D4
Quotients: C1, C2, C3, C22, C6, D4, C23, C9, C2×C6, C2×D4, C4○D4, C18, C3×D4, C22×C6, C4.4D4, C2×C18, C6×D4, C3×C4○D4, D4×C9, C22×C18, C3×C4.4D4, D4×C18, C9×C4○D4, C9×C4.4D4
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(1 26 46 13)(2 27 47 14)(3 19 48 15)(4 20 49 16)(5 21 50 17)(6 22 51 18)(7 23 52 10)(8 24 53 11)(9 25 54 12)(28 132 39 136)(29 133 40 137)(30 134 41 138)(31 135 42 139)(32 127 43 140)(33 128 44 141)(34 129 45 142)(35 130 37 143)(36 131 38 144)(55 125 68 116)(56 126 69 117)(57 118 70 109)(58 119 71 110)(59 120 72 111)(60 121 64 112)(61 122 65 113)(62 123 66 114)(63 124 67 115)(73 106 82 93)(74 107 83 94)(75 108 84 95)(76 100 85 96)(77 101 86 97)(78 102 87 98)(79 103 88 99)(80 104 89 91)(81 105 90 92)
(1 109 34 106)(2 110 35 107)(3 111 36 108)(4 112 28 100)(5 113 29 101)(6 114 30 102)(7 115 31 103)(8 116 32 104)(9 117 33 105)(10 67 139 79)(11 68 140 80)(12 69 141 81)(13 70 142 73)(14 71 143 74)(15 72 144 75)(16 64 136 76)(17 65 137 77)(18 66 138 78)(19 59 131 84)(20 60 132 85)(21 61 133 86)(22 62 134 87)(23 63 135 88)(24 55 127 89)(25 56 128 90)(26 57 129 82)(27 58 130 83)(37 94 47 119)(38 95 48 120)(39 96 49 121)(40 97 50 122)(41 98 51 123)(42 99 52 124)(43 91 53 125)(44 92 54 126)(45 93 46 118)
(1 93 46 106)(2 94 47 107)(3 95 48 108)(4 96 49 100)(5 97 50 101)(6 98 51 102)(7 99 52 103)(8 91 53 104)(9 92 54 105)(10 79 23 88)(11 80 24 89)(12 81 25 90)(13 73 26 82)(14 74 27 83)(15 75 19 84)(16 76 20 85)(17 77 21 86)(18 78 22 87)(28 121 39 112)(29 122 40 113)(30 123 41 114)(31 124 42 115)(32 125 43 116)(33 126 44 117)(34 118 45 109)(35 119 37 110)(36 120 38 111)(55 140 68 127)(56 141 69 128)(57 142 70 129)(58 143 71 130)(59 144 72 131)(60 136 64 132)(61 137 65 133)(62 138 66 134)(63 139 67 135)
G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,26,46,13)(2,27,47,14)(3,19,48,15)(4,20,49,16)(5,21,50,17)(6,22,51,18)(7,23,52,10)(8,24,53,11)(9,25,54,12)(28,132,39,136)(29,133,40,137)(30,134,41,138)(31,135,42,139)(32,127,43,140)(33,128,44,141)(34,129,45,142)(35,130,37,143)(36,131,38,144)(55,125,68,116)(56,126,69,117)(57,118,70,109)(58,119,71,110)(59,120,72,111)(60,121,64,112)(61,122,65,113)(62,123,66,114)(63,124,67,115)(73,106,82,93)(74,107,83,94)(75,108,84,95)(76,100,85,96)(77,101,86,97)(78,102,87,98)(79,103,88,99)(80,104,89,91)(81,105,90,92), (1,109,34,106)(2,110,35,107)(3,111,36,108)(4,112,28,100)(5,113,29,101)(6,114,30,102)(7,115,31,103)(8,116,32,104)(9,117,33,105)(10,67,139,79)(11,68,140,80)(12,69,141,81)(13,70,142,73)(14,71,143,74)(15,72,144,75)(16,64,136,76)(17,65,137,77)(18,66,138,78)(19,59,131,84)(20,60,132,85)(21,61,133,86)(22,62,134,87)(23,63,135,88)(24,55,127,89)(25,56,128,90)(26,57,129,82)(27,58,130,83)(37,94,47,119)(38,95,48,120)(39,96,49,121)(40,97,50,122)(41,98,51,123)(42,99,52,124)(43,91,53,125)(44,92,54,126)(45,93,46,118), (1,93,46,106)(2,94,47,107)(3,95,48,108)(4,96,49,100)(5,97,50,101)(6,98,51,102)(7,99,52,103)(8,91,53,104)(9,92,54,105)(10,79,23,88)(11,80,24,89)(12,81,25,90)(13,73,26,82)(14,74,27,83)(15,75,19,84)(16,76,20,85)(17,77,21,86)(18,78,22,87)(28,121,39,112)(29,122,40,113)(30,123,41,114)(31,124,42,115)(32,125,43,116)(33,126,44,117)(34,118,45,109)(35,119,37,110)(36,120,38,111)(55,140,68,127)(56,141,69,128)(57,142,70,129)(58,143,71,130)(59,144,72,131)(60,136,64,132)(61,137,65,133)(62,138,66,134)(63,139,67,135)>;
G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,26,46,13)(2,27,47,14)(3,19,48,15)(4,20,49,16)(5,21,50,17)(6,22,51,18)(7,23,52,10)(8,24,53,11)(9,25,54,12)(28,132,39,136)(29,133,40,137)(30,134,41,138)(31,135,42,139)(32,127,43,140)(33,128,44,141)(34,129,45,142)(35,130,37,143)(36,131,38,144)(55,125,68,116)(56,126,69,117)(57,118,70,109)(58,119,71,110)(59,120,72,111)(60,121,64,112)(61,122,65,113)(62,123,66,114)(63,124,67,115)(73,106,82,93)(74,107,83,94)(75,108,84,95)(76,100,85,96)(77,101,86,97)(78,102,87,98)(79,103,88,99)(80,104,89,91)(81,105,90,92), (1,109,34,106)(2,110,35,107)(3,111,36,108)(4,112,28,100)(5,113,29,101)(6,114,30,102)(7,115,31,103)(8,116,32,104)(9,117,33,105)(10,67,139,79)(11,68,140,80)(12,69,141,81)(13,70,142,73)(14,71,143,74)(15,72,144,75)(16,64,136,76)(17,65,137,77)(18,66,138,78)(19,59,131,84)(20,60,132,85)(21,61,133,86)(22,62,134,87)(23,63,135,88)(24,55,127,89)(25,56,128,90)(26,57,129,82)(27,58,130,83)(37,94,47,119)(38,95,48,120)(39,96,49,121)(40,97,50,122)(41,98,51,123)(42,99,52,124)(43,91,53,125)(44,92,54,126)(45,93,46,118), (1,93,46,106)(2,94,47,107)(3,95,48,108)(4,96,49,100)(5,97,50,101)(6,98,51,102)(7,99,52,103)(8,91,53,104)(9,92,54,105)(10,79,23,88)(11,80,24,89)(12,81,25,90)(13,73,26,82)(14,74,27,83)(15,75,19,84)(16,76,20,85)(17,77,21,86)(18,78,22,87)(28,121,39,112)(29,122,40,113)(30,123,41,114)(31,124,42,115)(32,125,43,116)(33,126,44,117)(34,118,45,109)(35,119,37,110)(36,120,38,111)(55,140,68,127)(56,141,69,128)(57,142,70,129)(58,143,71,130)(59,144,72,131)(60,136,64,132)(61,137,65,133)(62,138,66,134)(63,139,67,135) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(1,26,46,13),(2,27,47,14),(3,19,48,15),(4,20,49,16),(5,21,50,17),(6,22,51,18),(7,23,52,10),(8,24,53,11),(9,25,54,12),(28,132,39,136),(29,133,40,137),(30,134,41,138),(31,135,42,139),(32,127,43,140),(33,128,44,141),(34,129,45,142),(35,130,37,143),(36,131,38,144),(55,125,68,116),(56,126,69,117),(57,118,70,109),(58,119,71,110),(59,120,72,111),(60,121,64,112),(61,122,65,113),(62,123,66,114),(63,124,67,115),(73,106,82,93),(74,107,83,94),(75,108,84,95),(76,100,85,96),(77,101,86,97),(78,102,87,98),(79,103,88,99),(80,104,89,91),(81,105,90,92)], [(1,109,34,106),(2,110,35,107),(3,111,36,108),(4,112,28,100),(5,113,29,101),(6,114,30,102),(7,115,31,103),(8,116,32,104),(9,117,33,105),(10,67,139,79),(11,68,140,80),(12,69,141,81),(13,70,142,73),(14,71,143,74),(15,72,144,75),(16,64,136,76),(17,65,137,77),(18,66,138,78),(19,59,131,84),(20,60,132,85),(21,61,133,86),(22,62,134,87),(23,63,135,88),(24,55,127,89),(25,56,128,90),(26,57,129,82),(27,58,130,83),(37,94,47,119),(38,95,48,120),(39,96,49,121),(40,97,50,122),(41,98,51,123),(42,99,52,124),(43,91,53,125),(44,92,54,126),(45,93,46,118)], [(1,93,46,106),(2,94,47,107),(3,95,48,108),(4,96,49,100),(5,97,50,101),(6,98,51,102),(7,99,52,103),(8,91,53,104),(9,92,54,105),(10,79,23,88),(11,80,24,89),(12,81,25,90),(13,73,26,82),(14,74,27,83),(15,75,19,84),(16,76,20,85),(17,77,21,86),(18,78,22,87),(28,121,39,112),(29,122,40,113),(30,123,41,114),(31,124,42,115),(32,125,43,116),(33,126,44,117),(34,118,45,109),(35,119,37,110),(36,120,38,111),(55,140,68,127),(56,141,69,128),(57,142,70,129),(58,143,71,130),(59,144,72,131),(60,136,64,132),(61,137,65,133),(62,138,66,134),(63,139,67,135)]])
126 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 4A | ··· | 4F | 4G | 4H | 6A | ··· | 6F | 6G | 6H | 6I | 6J | 9A | ··· | 9F | 12A | ··· | 12L | 12M | 12N | 12O | 12P | 18A | ··· | 18R | 18S | ··· | 18AD | 36A | ··· | 36AJ | 36AK | ··· | 36AV |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | ··· | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 9 | ··· | 9 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 18 | ··· | 18 | 18 | ··· | 18 | 36 | ··· | 36 | 36 | ··· | 36 |
| size | 1 | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 1 | ··· | 1 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
126 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | + | |||||||||||||||
| image | C1 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | C9 | C18 | C18 | C18 | C18 | D4 | C4○D4 | C3×D4 | C3×C4○D4 | D4×C9 | C9×C4○D4 |
| kernel | C9×C4.4D4 | C4×C36 | C9×C22⋊C4 | D4×C18 | Q8×C18 | C3×C4.4D4 | C4×C12 | C3×C22⋊C4 | C6×D4 | C6×Q8 | C4.4D4 | C42 | C22⋊C4 | C2×D4 | C2×Q8 | C36 | C18 | C12 | C6 | C4 | C2 |
| # reps | 1 | 1 | 4 | 1 | 1 | 2 | 2 | 8 | 2 | 2 | 6 | 6 | 24 | 6 | 6 | 2 | 4 | 4 | 8 | 12 | 24 |
Matrix representation of C9×C4.4D4 ►in GL4(𝔽37) generated by
| 12 | 0 | 0 | 0 |
| 0 | 12 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 |
| 36 | 0 | 0 | 0 |
| 0 | 36 | 0 | 0 |
| 0 | 0 | 0 | 6 |
| 0 | 0 | 6 | 0 |
| 2 | 21 | 0 | 0 |
| 35 | 35 | 0 | 0 |
| 0 | 0 | 31 | 0 |
| 0 | 0 | 0 | 31 |
| 2 | 21 | 0 | 0 |
| 21 | 35 | 0 | 0 |
| 0 | 0 | 31 | 0 |
| 0 | 0 | 0 | 6 |
G:=sub<GL(4,GF(37))| [12,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[36,0,0,0,0,36,0,0,0,0,0,6,0,0,6,0],[2,35,0,0,21,35,0,0,0,0,31,0,0,0,0,31],[2,21,0,0,21,35,0,0,0,0,31,0,0,0,0,6] >;
C9×C4.4D4 in GAP, Magma, Sage, TeX
C_9\times C_4._4D_4
% in TeX
G:=Group("C9xC4.4D4"); // GroupNames label
G:=SmallGroup(288,174);
// by ID
G=gap.SmallGroup(288,174);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,365,344,1094,142,360]);
// Polycyclic
G:=Group<a,b,c,d|a^9=b^4=c^4=1,d^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=b^2*c^-1>;
// generators/relations