Extensions 1→N→G→Q→1 with N=C3:D24 and Q=C2

Direct product G=NxQ with N=C3:D24 and Q=C2
dρLabelID
C2xC3:D2448C2xC3:D24288,472

Semidirect products G=N:Q with N=C3:D24 and Q=C2
extensionφ:Q→Out NdρLabelID
C3:D24:1C2 = S3xD24φ: C2/C1C2 ⊆ Out C3:D24484+C3:D24:1C2288,441
C3:D24:2C2 = D6.1D12φ: C2/C1C2 ⊆ Out C3:D24484C3:D24:2C2288,454
C3:D24:3C2 = C24:1D6φ: C2/C1C2 ⊆ Out C3:D24484+C3:D24:3C2288,442
C3:D24:4C2 = D24:S3φ: C2/C1C2 ⊆ Out C3:D24484C3:D24:4C2288,443
C3:D24:5C2 = D12:18D6φ: C2/C1C2 ⊆ Out C3:D24244+C3:D24:5C2288,473
C3:D24:6C2 = D12.28D6φ: C2/C1C2 ⊆ Out C3:D24484C3:D24:6C2288,478
C3:D24:7C2 = S3xD4:S3φ: C2/C1C2 ⊆ Out C3:D24488+C3:D24:7C2288,572
C3:D24:8C2 = D12:D6φ: C2/C1C2 ⊆ Out C3:D24248+C3:D24:8C2288,574
C3:D24:9C2 = D12.13D6φ: C2/C1C2 ⊆ Out C3:D24488+C3:D24:9C2288,597
C3:D24:10C2 = D12.14D6φ: C2/C1C2 ⊆ Out C3:D24488+C3:D24:10C2288,598
C3:D24:11C2 = D12.7D6φ: C2/C1C2 ⊆ Out C3:D24488+C3:D24:11C2288,582
C3:D24:12C2 = D12:5D6φ: C2/C1C2 ⊆ Out C3:D24248+C3:D24:12C2288,585
C3:D24:13C2 = D12:6D6φ: C2/C1C2 ⊆ Out C3:D24488+C3:D24:13C2288,587
C3:D24:14C2 = D12.10D6φ: C2/C1C2 ⊆ Out C3:D24488+C3:D24:14C2288,589
C3:D24:15C2 = D12.27D6φ: trivial image484C3:D24:15C2288,477


׿
x
:
Z
F
o
wr
Q
<