metabelian, supersoluble, monomial
Aliases: C3⋊2D24, C32⋊3D8, D12⋊1S3, C12.10D6, C6.12D12, C3⋊C8⋊1S3, C4.1S32, (C3×C6).7D4, C3⋊1(D4⋊S3), (C3×D12)⋊2C2, C12⋊S3⋊2C2, C6.1(C3⋊D4), (C3×C12).2C22, C2.4(C3⋊D12), (C3×C3⋊C8)⋊1C2, SmallGroup(144,57)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3⋊D24
G = < a,b,c | a3=b24=c2=1, bab-1=cac=a-1, cbc=b-1 >
Character table of C3⋊D24
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 4 | 6A | 6B | 6C | 6D | 6E | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 12 | 36 | 2 | 2 | 4 | 2 | 2 | 2 | 4 | 12 | 12 | 6 | 6 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 2 | 2 | 0 | 2 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | -2 | 0 | 2 | -1 | -1 | 2 | -1 | 2 | -1 | 1 | 1 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ8 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | -2 | -2 | -1 | -1 | -1 | -1 | 2 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ9 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | -2 | -√3 | -√3 | √3 | √3 | orthogonal lifted from D12 |
ρ11 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | -2 | √3 | √3 | -√3 | -√3 | orthogonal lifted from D12 |
ρ12 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ13 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ14 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | 0 | -2 | 1 | 1 | 0 | 0 | √2 | -√2 | √3 | -√3 | √3 | -√3 | 0 | ζ87ζ3+ζ85ζ3+ζ85 | ζ87ζ32+ζ87+ζ85ζ32 | ζ83ζ32+ζ8ζ32+ζ8 | ζ83ζ3+ζ83+ζ8ζ3 | orthogonal lifted from D24 |
ρ15 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | 0 | -2 | 1 | 1 | 0 | 0 | -√2 | √2 | -√3 | √3 | -√3 | √3 | 0 | ζ83ζ32+ζ8ζ32+ζ8 | ζ83ζ3+ζ83+ζ8ζ3 | ζ87ζ3+ζ85ζ3+ζ85 | ζ87ζ32+ζ87+ζ85ζ32 | orthogonal lifted from D24 |
ρ16 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | 0 | -2 | 1 | 1 | 0 | 0 | √2 | -√2 | -√3 | √3 | -√3 | √3 | 0 | ζ83ζ3+ζ83+ζ8ζ3 | ζ83ζ32+ζ8ζ32+ζ8 | ζ87ζ32+ζ87+ζ85ζ32 | ζ87ζ3+ζ85ζ3+ζ85 | orthogonal lifted from D24 |
ρ17 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | 0 | -2 | 1 | 1 | 0 | 0 | -√2 | √2 | √3 | -√3 | √3 | -√3 | 0 | ζ87ζ32+ζ87+ζ85ζ32 | ζ87ζ3+ζ85ζ3+ζ85 | ζ83ζ3+ζ83+ζ8ζ3 | ζ83ζ32+ζ8ζ32+ζ8 | orthogonal lifted from D24 |
ρ18 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -2 | -1 | 2 | -1 | √-3 | -√-3 | 0 | 0 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ19 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -2 | -1 | 2 | -1 | -√-3 | √-3 | 0 | 0 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ20 | 4 | -4 | 0 | 0 | 4 | -2 | -2 | 0 | 2 | -4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊S3, Schur index 2 |
ρ21 | 4 | 4 | 0 | 0 | -2 | -2 | 1 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 1 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ22 | 4 | 4 | 0 | 0 | -2 | -2 | 1 | -4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from C3⋊D12 |
ρ23 | 4 | -4 | 0 | 0 | -2 | -2 | 1 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -2√3 | 2√3 | √3 | -√3 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ24 | 4 | -4 | 0 | 0 | -2 | -2 | 1 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 2√3 | -2√3 | -√3 | √3 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 17 9)(2 10 18)(3 19 11)(4 12 20)(5 21 13)(6 14 22)(7 23 15)(8 16 24)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 24)(17 23)(18 22)(19 21)
G:=sub<Sym(24)| (1,17,9)(2,10,18)(3,19,11)(4,12,20)(5,21,13)(6,14,22)(7,23,15)(8,16,24), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,24)(17,23)(18,22)(19,21)>;
G:=Group( (1,17,9)(2,10,18)(3,19,11)(4,12,20)(5,21,13)(6,14,22)(7,23,15)(8,16,24), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,24)(17,23)(18,22)(19,21) );
G=PermutationGroup([[(1,17,9),(2,10,18),(3,19,11),(4,12,20),(5,21,13),(6,14,22),(7,23,15),(8,16,24)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,24),(17,23),(18,22),(19,21)]])
G:=TransitiveGroup(24,234);
C3⋊D24 is a maximal subgroup of
S3×D24 C24⋊1D6 D24⋊S3 D6.1D12 D12⋊18D6 D12.27D6 D12.28D6 S3×D4⋊S3 D12⋊D6 D12.7D6 D12⋊5D6 D12⋊6D6 D12.10D6 D12.13D6 D12.14D6 C3⋊D72 C9⋊D24 He3⋊2D8 He3⋊3D8 C33⋊7D8 C33⋊8D8 C33⋊9D8
C3⋊D24 is a maximal quotient of
C3⋊D48 C32⋊3SD32 C24.49D6 C32⋊3Q32 C6.16D24 C6.17D24 C6.18D24 C3⋊D72 C9⋊D24 He3⋊3D8 C33⋊7D8 C33⋊8D8 C33⋊9D8
Matrix representation of C3⋊D24 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 1 | 72 |
13 | 48 | 0 | 0 | 0 | 0 |
3 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
14 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[13,3,0,0,0,0,48,28,0,0,0,0,0,0,1,72,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,14,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,72,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C3⋊D24 in GAP, Magma, Sage, TeX
C_3\rtimes D_{24}
% in TeX
G:=Group("C3:D24");
// GroupNames label
G:=SmallGroup(144,57);
// by ID
G=gap.SmallGroup(144,57);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,73,79,218,50,490,3461]);
// Polycyclic
G:=Group<a,b,c|a^3=b^24=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export
Subgroup lattice of C3⋊D24 in TeX
Character table of C3⋊D24 in TeX