Extensions 1→N→G→Q→1 with N=C8 and Q=C2×C18

Direct product G=N×Q with N=C8 and Q=C2×C18
dρLabelID
C22×C72288C2^2xC72288,179

Semidirect products G=N:Q with N=C8 and Q=C2×C18
extensionφ:Q→Aut NdρLabelID
C8⋊(C2×C18) = C9×C8⋊C22φ: C2×C18/C9C22 ⊆ Aut C8724C8:(C2xC18)288,186
C82(C2×C18) = D8×C18φ: C2×C18/C18C2 ⊆ Aut C8144C8:2(C2xC18)288,182
C83(C2×C18) = SD16×C18φ: C2×C18/C18C2 ⊆ Aut C8144C8:3(C2xC18)288,183
C84(C2×C18) = M4(2)×C18φ: C2×C18/C18C2 ⊆ Aut C8144C8:4(C2xC18)288,180

Non-split extensions G=N.Q with N=C8 and Q=C2×C18
extensionφ:Q→Aut NdρLabelID
C8.(C2×C18) = C9×C8.C22φ: C2×C18/C9C22 ⊆ Aut C81444C8.(C2xC18)288,187
C8.2(C2×C18) = C9×D16φ: C2×C18/C18C2 ⊆ Aut C81442C8.2(C2xC18)288,61
C8.3(C2×C18) = C9×SD32φ: C2×C18/C18C2 ⊆ Aut C81442C8.3(C2xC18)288,62
C8.4(C2×C18) = C9×Q32φ: C2×C18/C18C2 ⊆ Aut C82882C8.4(C2xC18)288,63
C8.5(C2×C18) = Q16×C18φ: C2×C18/C18C2 ⊆ Aut C8288C8.5(C2xC18)288,184
C8.6(C2×C18) = C9×C4○D8φ: C2×C18/C18C2 ⊆ Aut C81442C8.6(C2xC18)288,185
C8.7(C2×C18) = C9×C8○D4φ: C2×C18/C18C2 ⊆ Aut C81442C8.7(C2xC18)288,181
C8.8(C2×C18) = C9×M5(2)central extension (φ=1)1442C8.8(C2xC18)288,60

׿
×
𝔽