Copied to
clipboard

G = C9xSD32order 288 = 25·32

Direct product of C9 and SD32

direct product, metacyclic, nilpotent (class 4), monomial, 2-elementary

Aliases: C9xSD32, D8.C18, C16:2C18, C144:6C2, C48.5C6, Q16:1C18, C36.38D4, C18.16D8, C72.25C22, C4.2(D4xC9), C2.4(C9xD8), C3.(C3xSD32), C8.3(C2xC18), (C9xQ16):5C2, (C3xD8).3C6, (C9xD8).2C2, C6.16(C3xD8), (C3xSD32).C3, C24.22(C2xC6), C12.37(C3xD4), (C3xQ16).2C6, SmallGroup(288,62)

Series: Derived Chief Lower central Upper central

C1C8 — C9xSD32
C1C2C4C12C24C72C9xQ16 — C9xSD32
C1C2C4C8 — C9xSD32
C1C18C36C72 — C9xSD32

Generators and relations for C9xSD32
 G = < a,b,c | a9=b16=c2=1, ab=ba, ac=ca, cbc=b7 >

Subgroups: 84 in 39 conjugacy classes, 24 normal (all characteristic)
Quotients: C1, C2, C3, C22, C6, D4, C9, C2xC6, D8, C18, C3xD4, SD32, C2xC18, C3xD8, D4xC9, C3xSD32, C9xD8, C9xSD32
8C2
4C22
4C4
8C6
2Q8
2D4
4C12
4C2xC6
8C18
2C3xQ8
2C3xD4
4C36
4C2xC18
2Q8xC9
2D4xC9

Smallest permutation representation of C9xSD32
On 144 points
Generators in S144
(1 110 92 137 60 31 114 46 66)(2 111 93 138 61 32 115 47 67)(3 112 94 139 62 17 116 48 68)(4 97 95 140 63 18 117 33 69)(5 98 96 141 64 19 118 34 70)(6 99 81 142 49 20 119 35 71)(7 100 82 143 50 21 120 36 72)(8 101 83 144 51 22 121 37 73)(9 102 84 129 52 23 122 38 74)(10 103 85 130 53 24 123 39 75)(11 104 86 131 54 25 124 40 76)(12 105 87 132 55 26 125 41 77)(13 106 88 133 56 27 126 42 78)(14 107 89 134 57 28 127 43 79)(15 108 90 135 58 29 128 44 80)(16 109 91 136 59 30 113 45 65)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(2 8)(3 15)(4 6)(5 13)(7 11)(10 16)(12 14)(17 29)(18 20)(19 27)(21 25)(22 32)(24 30)(26 28)(33 35)(34 42)(36 40)(37 47)(39 45)(41 43)(44 48)(49 63)(50 54)(51 61)(53 59)(55 57)(56 64)(58 62)(65 75)(67 73)(68 80)(69 71)(70 78)(72 76)(77 79)(81 95)(82 86)(83 93)(85 91)(87 89)(88 96)(90 94)(97 99)(98 106)(100 104)(101 111)(103 109)(105 107)(108 112)(113 123)(115 121)(116 128)(117 119)(118 126)(120 124)(125 127)(130 136)(131 143)(132 134)(133 141)(135 139)(138 144)(140 142)

G:=sub<Sym(144)| (1,110,92,137,60,31,114,46,66)(2,111,93,138,61,32,115,47,67)(3,112,94,139,62,17,116,48,68)(4,97,95,140,63,18,117,33,69)(5,98,96,141,64,19,118,34,70)(6,99,81,142,49,20,119,35,71)(7,100,82,143,50,21,120,36,72)(8,101,83,144,51,22,121,37,73)(9,102,84,129,52,23,122,38,74)(10,103,85,130,53,24,123,39,75)(11,104,86,131,54,25,124,40,76)(12,105,87,132,55,26,125,41,77)(13,106,88,133,56,27,126,42,78)(14,107,89,134,57,28,127,43,79)(15,108,90,135,58,29,128,44,80)(16,109,91,136,59,30,113,45,65), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,29)(18,20)(19,27)(21,25)(22,32)(24,30)(26,28)(33,35)(34,42)(36,40)(37,47)(39,45)(41,43)(44,48)(49,63)(50,54)(51,61)(53,59)(55,57)(56,64)(58,62)(65,75)(67,73)(68,80)(69,71)(70,78)(72,76)(77,79)(81,95)(82,86)(83,93)(85,91)(87,89)(88,96)(90,94)(97,99)(98,106)(100,104)(101,111)(103,109)(105,107)(108,112)(113,123)(115,121)(116,128)(117,119)(118,126)(120,124)(125,127)(130,136)(131,143)(132,134)(133,141)(135,139)(138,144)(140,142)>;

G:=Group( (1,110,92,137,60,31,114,46,66)(2,111,93,138,61,32,115,47,67)(3,112,94,139,62,17,116,48,68)(4,97,95,140,63,18,117,33,69)(5,98,96,141,64,19,118,34,70)(6,99,81,142,49,20,119,35,71)(7,100,82,143,50,21,120,36,72)(8,101,83,144,51,22,121,37,73)(9,102,84,129,52,23,122,38,74)(10,103,85,130,53,24,123,39,75)(11,104,86,131,54,25,124,40,76)(12,105,87,132,55,26,125,41,77)(13,106,88,133,56,27,126,42,78)(14,107,89,134,57,28,127,43,79)(15,108,90,135,58,29,128,44,80)(16,109,91,136,59,30,113,45,65), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,29)(18,20)(19,27)(21,25)(22,32)(24,30)(26,28)(33,35)(34,42)(36,40)(37,47)(39,45)(41,43)(44,48)(49,63)(50,54)(51,61)(53,59)(55,57)(56,64)(58,62)(65,75)(67,73)(68,80)(69,71)(70,78)(72,76)(77,79)(81,95)(82,86)(83,93)(85,91)(87,89)(88,96)(90,94)(97,99)(98,106)(100,104)(101,111)(103,109)(105,107)(108,112)(113,123)(115,121)(116,128)(117,119)(118,126)(120,124)(125,127)(130,136)(131,143)(132,134)(133,141)(135,139)(138,144)(140,142) );

G=PermutationGroup([[(1,110,92,137,60,31,114,46,66),(2,111,93,138,61,32,115,47,67),(3,112,94,139,62,17,116,48,68),(4,97,95,140,63,18,117,33,69),(5,98,96,141,64,19,118,34,70),(6,99,81,142,49,20,119,35,71),(7,100,82,143,50,21,120,36,72),(8,101,83,144,51,22,121,37,73),(9,102,84,129,52,23,122,38,74),(10,103,85,130,53,24,123,39,75),(11,104,86,131,54,25,124,40,76),(12,105,87,132,55,26,125,41,77),(13,106,88,133,56,27,126,42,78),(14,107,89,134,57,28,127,43,79),(15,108,90,135,58,29,128,44,80),(16,109,91,136,59,30,113,45,65)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(2,8),(3,15),(4,6),(5,13),(7,11),(10,16),(12,14),(17,29),(18,20),(19,27),(21,25),(22,32),(24,30),(26,28),(33,35),(34,42),(36,40),(37,47),(39,45),(41,43),(44,48),(49,63),(50,54),(51,61),(53,59),(55,57),(56,64),(58,62),(65,75),(67,73),(68,80),(69,71),(70,78),(72,76),(77,79),(81,95),(82,86),(83,93),(85,91),(87,89),(88,96),(90,94),(97,99),(98,106),(100,104),(101,111),(103,109),(105,107),(108,112),(113,123),(115,121),(116,128),(117,119),(118,126),(120,124),(125,127),(130,136),(131,143),(132,134),(133,141),(135,139),(138,144),(140,142)]])

99 conjugacy classes

class 1 2A2B3A3B4A4B6A6B6C6D8A8B9A···9F12A12B12C12D16A16B16C16D18A···18F18G···18L24A24B24C24D36A···36F36G···36L48A···48H72A···72L144A···144X
order12233446666889···9121212121616161618···1818···182424242436···3636···3648···4872···72144···144
size11811281188221···1228822221···18···822222···28···82···22···22···2

99 irreducible representations

dim111111111111222222222
type++++++
imageC1C2C2C2C3C6C6C6C9C18C18C18D4D8C3xD4SD32C3xD8D4xC9C3xSD32C9xD8C9xSD32
kernelC9xSD32C144C9xD8C9xQ16C3xSD32C48C3xD8C3xQ16SD32C16D8Q16C36C18C12C9C6C4C3C2C1
# reps11112222666612244681224

Matrix representation of C9xSD32 in GL4(F433) generated by

256000
025600
0010
0001
,
33010300
33033000
0024615
00209231
,
1000
043200
0010
00432432
G:=sub<GL(4,GF(433))| [256,0,0,0,0,256,0,0,0,0,1,0,0,0,0,1],[330,330,0,0,103,330,0,0,0,0,246,209,0,0,15,231],[1,0,0,0,0,432,0,0,0,0,1,432,0,0,0,432] >;

C9xSD32 in GAP, Magma, Sage, TeX

C_9\times {\rm SD}_{32}
% in TeX

G:=Group("C9xSD32");
// GroupNames label

G:=SmallGroup(288,62);
// by ID

G=gap.SmallGroup(288,62);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-3,-2,-2,1008,197,142,2355,1186,528,9077,4548,124]);
// Polycyclic

G:=Group<a,b,c|a^9=b^16=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^7>;
// generators/relations

Export

Subgroup lattice of C9xSD32 in TeX

׿
x
:
Z
F
o
wr
Q
<