Extensions 1→N→G→Q→1 with N=C2×C8 and Q=D9

Direct product G=N×Q with N=C2×C8 and Q=D9
dρLabelID
C2×C8×D9144C2xC8xD9288,110

Semidirect products G=N:Q with N=C2×C8 and Q=D9
extensionφ:Q→Aut NdρLabelID
(C2×C8)⋊1D9 = D18⋊C8φ: D9/C9C2 ⊆ Aut C2×C8144(C2xC8):1D9288,27
(C2×C8)⋊2D9 = C2.D72φ: D9/C9C2 ⊆ Aut C2×C8144(C2xC8):2D9288,28
(C2×C8)⋊3D9 = C2×D72φ: D9/C9C2 ⊆ Aut C2×C8144(C2xC8):3D9288,114
(C2×C8)⋊4D9 = D727C2φ: D9/C9C2 ⊆ Aut C2×C81442(C2xC8):4D9288,115
(C2×C8)⋊5D9 = C2×C72⋊C2φ: D9/C9C2 ⊆ Aut C2×C8144(C2xC8):5D9288,113
(C2×C8)⋊6D9 = C2×C8⋊D9φ: D9/C9C2 ⊆ Aut C2×C8144(C2xC8):6D9288,111
(C2×C8)⋊7D9 = D36.2C4φ: D9/C9C2 ⊆ Aut C2×C81442(C2xC8):7D9288,112

Non-split extensions G=N.Q with N=C2×C8 and Q=D9
extensionφ:Q→Aut NdρLabelID
(C2×C8).1D9 = Dic9⋊C8φ: D9/C9C2 ⊆ Aut C2×C8288(C2xC8).1D9288,22
(C2×C8).2D9 = C36.45D4φ: D9/C9C2 ⊆ Aut C2×C8288(C2xC8).2D9288,24
(C2×C8).3D9 = C721C4φ: D9/C9C2 ⊆ Aut C2×C8288(C2xC8).3D9288,26
(C2×C8).4D9 = C2×Dic36φ: D9/C9C2 ⊆ Aut C2×C8288(C2xC8).4D9288,109
(C2×C8).5D9 = C72.C4φ: D9/C9C2 ⊆ Aut C2×C81442(C2xC8).5D9288,20
(C2×C8).6D9 = C8⋊Dic9φ: D9/C9C2 ⊆ Aut C2×C8288(C2xC8).6D9288,25
(C2×C8).7D9 = C36.C8φ: D9/C9C2 ⊆ Aut C2×C81442(C2xC8).7D9288,19
(C2×C8).8D9 = C72⋊C4φ: D9/C9C2 ⊆ Aut C2×C8288(C2xC8).8D9288,23
(C2×C8).9D9 = C2×C9⋊C16central extension (φ=1)288(C2xC8).9D9288,18
(C2×C8).10D9 = C8×Dic9central extension (φ=1)288(C2xC8).10D9288,21

׿
×
𝔽