Copied to
clipboard

G = D36.2C4order 288 = 25·32

The non-split extension by D36 of C4 acting through Inn(D36)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D36.2C4, C24.90D6, C8.22D18, C72.23C22, C36.37C23, Dic18.2C4, (C2×C8)⋊7D9, (C8×D9)⋊6C2, C91(C8○D4), (C2×C72)⋊10C2, C8⋊D97C2, C3.(C8○D12), C4.10(C4×D9), C9⋊D4.2C4, C12.59(C4×S3), (C2×C24).29S3, C36.20(C2×C4), D18.1(C2×C4), (C2×C4).80D18, C9⋊C8.11C22, C22.2(C4×D9), (C2×C12).393D6, C4.Dic911C2, Dic9.3(C2×C4), C4.37(C22×D9), D365C2.6C2, C18.14(C22×C4), (C2×C36).96C22, (C4×D9).15C22, C12.198(C22×S3), C6.53(S3×C2×C4), C2.15(C2×C4×D9), (C2×C6).41(C4×S3), (C2×C18).15(C2×C4), SmallGroup(288,112)

Series: Derived Chief Lower central Upper central

C1C18 — D36.2C4
C1C3C9C18C36C4×D9D365C2 — D36.2C4
C9C18 — D36.2C4
C1C8C2×C8

Generators and relations for D36.2C4
 G = < a,b,c | a36=b2=1, c4=a18, bab=a-1, ac=ca, bc=cb >

Subgroups: 332 in 93 conjugacy classes, 46 normal (32 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2×C4, C2×C4, D4, Q8, C9, Dic3, C12, D6, C2×C6, C2×C8, C2×C8, M4(2), C4○D4, D9, C18, C18, C3⋊C8, C24, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C8○D4, Dic9, C36, D18, C2×C18, S3×C8, C8⋊S3, C4.Dic3, C2×C24, C4○D12, C9⋊C8, C72, Dic18, C4×D9, D36, C9⋊D4, C2×C36, C8○D12, C8×D9, C8⋊D9, C4.Dic9, C2×C72, D365C2, D36.2C4
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C22×C4, D9, C4×S3, C22×S3, C8○D4, D18, S3×C2×C4, C4×D9, C22×D9, C8○D12, C2×C4×D9, D36.2C4

Smallest permutation representation of D36.2C4
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 27)(2 26)(3 25)(4 24)(5 23)(6 22)(7 21)(8 20)(9 19)(10 18)(11 17)(12 16)(13 15)(28 36)(29 35)(30 34)(31 33)(37 69)(38 68)(39 67)(40 66)(41 65)(42 64)(43 63)(44 62)(45 61)(46 60)(47 59)(48 58)(49 57)(50 56)(51 55)(52 54)(70 72)(73 85)(74 84)(75 83)(76 82)(77 81)(78 80)(86 108)(87 107)(88 106)(89 105)(90 104)(91 103)(92 102)(93 101)(94 100)(95 99)(96 98)(109 133)(110 132)(111 131)(112 130)(113 129)(114 128)(115 127)(116 126)(117 125)(118 124)(119 123)(120 122)(134 144)(135 143)(136 142)(137 141)(138 140)
(1 40 102 126 19 58 84 144)(2 41 103 127 20 59 85 109)(3 42 104 128 21 60 86 110)(4 43 105 129 22 61 87 111)(5 44 106 130 23 62 88 112)(6 45 107 131 24 63 89 113)(7 46 108 132 25 64 90 114)(8 47 73 133 26 65 91 115)(9 48 74 134 27 66 92 116)(10 49 75 135 28 67 93 117)(11 50 76 136 29 68 94 118)(12 51 77 137 30 69 95 119)(13 52 78 138 31 70 96 120)(14 53 79 139 32 71 97 121)(15 54 80 140 33 72 98 122)(16 55 81 141 34 37 99 123)(17 56 82 142 35 38 100 124)(18 57 83 143 36 39 101 125)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,27)(2,26)(3,25)(4,24)(5,23)(6,22)(7,21)(8,20)(9,19)(10,18)(11,17)(12,16)(13,15)(28,36)(29,35)(30,34)(31,33)(37,69)(38,68)(39,67)(40,66)(41,65)(42,64)(43,63)(44,62)(45,61)(46,60)(47,59)(48,58)(49,57)(50,56)(51,55)(52,54)(70,72)(73,85)(74,84)(75,83)(76,82)(77,81)(78,80)(86,108)(87,107)(88,106)(89,105)(90,104)(91,103)(92,102)(93,101)(94,100)(95,99)(96,98)(109,133)(110,132)(111,131)(112,130)(113,129)(114,128)(115,127)(116,126)(117,125)(118,124)(119,123)(120,122)(134,144)(135,143)(136,142)(137,141)(138,140), (1,40,102,126,19,58,84,144)(2,41,103,127,20,59,85,109)(3,42,104,128,21,60,86,110)(4,43,105,129,22,61,87,111)(5,44,106,130,23,62,88,112)(6,45,107,131,24,63,89,113)(7,46,108,132,25,64,90,114)(8,47,73,133,26,65,91,115)(9,48,74,134,27,66,92,116)(10,49,75,135,28,67,93,117)(11,50,76,136,29,68,94,118)(12,51,77,137,30,69,95,119)(13,52,78,138,31,70,96,120)(14,53,79,139,32,71,97,121)(15,54,80,140,33,72,98,122)(16,55,81,141,34,37,99,123)(17,56,82,142,35,38,100,124)(18,57,83,143,36,39,101,125)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,27)(2,26)(3,25)(4,24)(5,23)(6,22)(7,21)(8,20)(9,19)(10,18)(11,17)(12,16)(13,15)(28,36)(29,35)(30,34)(31,33)(37,69)(38,68)(39,67)(40,66)(41,65)(42,64)(43,63)(44,62)(45,61)(46,60)(47,59)(48,58)(49,57)(50,56)(51,55)(52,54)(70,72)(73,85)(74,84)(75,83)(76,82)(77,81)(78,80)(86,108)(87,107)(88,106)(89,105)(90,104)(91,103)(92,102)(93,101)(94,100)(95,99)(96,98)(109,133)(110,132)(111,131)(112,130)(113,129)(114,128)(115,127)(116,126)(117,125)(118,124)(119,123)(120,122)(134,144)(135,143)(136,142)(137,141)(138,140), (1,40,102,126,19,58,84,144)(2,41,103,127,20,59,85,109)(3,42,104,128,21,60,86,110)(4,43,105,129,22,61,87,111)(5,44,106,130,23,62,88,112)(6,45,107,131,24,63,89,113)(7,46,108,132,25,64,90,114)(8,47,73,133,26,65,91,115)(9,48,74,134,27,66,92,116)(10,49,75,135,28,67,93,117)(11,50,76,136,29,68,94,118)(12,51,77,137,30,69,95,119)(13,52,78,138,31,70,96,120)(14,53,79,139,32,71,97,121)(15,54,80,140,33,72,98,122)(16,55,81,141,34,37,99,123)(17,56,82,142,35,38,100,124)(18,57,83,143,36,39,101,125) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,27),(2,26),(3,25),(4,24),(5,23),(6,22),(7,21),(8,20),(9,19),(10,18),(11,17),(12,16),(13,15),(28,36),(29,35),(30,34),(31,33),(37,69),(38,68),(39,67),(40,66),(41,65),(42,64),(43,63),(44,62),(45,61),(46,60),(47,59),(48,58),(49,57),(50,56),(51,55),(52,54),(70,72),(73,85),(74,84),(75,83),(76,82),(77,81),(78,80),(86,108),(87,107),(88,106),(89,105),(90,104),(91,103),(92,102),(93,101),(94,100),(95,99),(96,98),(109,133),(110,132),(111,131),(112,130),(113,129),(114,128),(115,127),(116,126),(117,125),(118,124),(119,123),(120,122),(134,144),(135,143),(136,142),(137,141),(138,140)], [(1,40,102,126,19,58,84,144),(2,41,103,127,20,59,85,109),(3,42,104,128,21,60,86,110),(4,43,105,129,22,61,87,111),(5,44,106,130,23,62,88,112),(6,45,107,131,24,63,89,113),(7,46,108,132,25,64,90,114),(8,47,73,133,26,65,91,115),(9,48,74,134,27,66,92,116),(10,49,75,135,28,67,93,117),(11,50,76,136,29,68,94,118),(12,51,77,137,30,69,95,119),(13,52,78,138,31,70,96,120),(14,53,79,139,32,71,97,121),(15,54,80,140,33,72,98,122),(16,55,81,141,34,37,99,123),(17,56,82,142,35,38,100,124),(18,57,83,143,36,39,101,125)]])

84 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E6A6B6C8A8B8C8D8E8F8G8H8I8J9A9B9C12A12B12C12D18A···18I24A···24H36A···36L72A···72X
order1222234444466688888888889991212121218···1824···2436···3672···72
size1121818211218182221111221818181822222222···22···22···22···2

84 irreducible representations

dim1111111112222222222222
type++++++++++++
imageC1C2C2C2C2C2C4C4C4S3D6D6D9C4×S3C4×S3C8○D4D18D18C4×D9C4×D9C8○D12D36.2C4
kernelD36.2C4C8×D9C8⋊D9C4.Dic9C2×C72D365C2Dic18D36C9⋊D4C2×C24C24C2×C12C2×C8C12C2×C6C9C8C2×C4C4C22C3C1
# reps12211122412132246366824

Matrix representation of D36.2C4 in GL4(𝔽73) generated by

66700
665900
003145
00283
,
1100
07200
00721
0001
,
51000
05100
00720
00072
G:=sub<GL(4,GF(73))| [66,66,0,0,7,59,0,0,0,0,31,28,0,0,45,3],[1,0,0,0,1,72,0,0,0,0,72,0,0,0,1,1],[51,0,0,0,0,51,0,0,0,0,72,0,0,0,0,72] >;

D36.2C4 in GAP, Magma, Sage, TeX

D_{36}._2C_4
% in TeX

G:=Group("D36.2C4");
// GroupNames label

G:=SmallGroup(288,112);
// by ID

G=gap.SmallGroup(288,112);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,58,80,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c|a^36=b^2=1,c^4=a^18,b*a*b=a^-1,a*c=c*a,b*c=c*b>;
// generators/relations

׿
×
𝔽