Extensions 1→N→G→Q→1 with N=C6 and Q=S3xC8

Direct product G=NxQ with N=C6 and Q=S3xC8
dρLabelID
S3xC2xC2496S3xC2xC24288,670

Semidirect products G=N:Q with N=C6 and Q=S3xC8
extensionφ:Q→Aut NdρLabelID
C6:1(S3xC8) = C2xC12.29D6φ: S3xC8/C3:C8C2 ⊆ Aut C648C6:1(S3xC8)288,464
C6:2(S3xC8) = C2xC8xC3:S3φ: S3xC8/C24C2 ⊆ Aut C6144C6:2(S3xC8)288,756
C6:3(S3xC8) = C2xS3xC3:C8φ: S3xC8/C4xS3C2 ⊆ Aut C696C6:3(S3xC8)288,460

Non-split extensions G=N.Q with N=C6 and Q=S3xC8
extensionφ:Q→Aut NdρLabelID
C6.1(S3xC8) = C24.60D6φ: S3xC8/C3:C8C2 ⊆ Aut C6484C6.1(S3xC8)288,190
C6.2(S3xC8) = C24.62D6φ: S3xC8/C3:C8C2 ⊆ Aut C6484C6.2(S3xC8)288,192
C6.3(S3xC8) = C6.(S3xC8)φ: S3xC8/C3:C8C2 ⊆ Aut C696C6.3(S3xC8)288,201
C6.4(S3xC8) = C12.78D12φ: S3xC8/C3:C8C2 ⊆ Aut C648C6.4(S3xC8)288,205
C6.5(S3xC8) = C12.15Dic6φ: S3xC8/C3:C8C2 ⊆ Aut C696C6.5(S3xC8)288,220
C6.6(S3xC8) = C16xD9φ: S3xC8/C24C2 ⊆ Aut C61442C6.6(S3xC8)288,4
C6.7(S3xC8) = C16:D9φ: S3xC8/C24C2 ⊆ Aut C61442C6.7(S3xC8)288,5
C6.8(S3xC8) = C8xDic9φ: S3xC8/C24C2 ⊆ Aut C6288C6.8(S3xC8)288,21
C6.9(S3xC8) = Dic9:C8φ: S3xC8/C24C2 ⊆ Aut C6288C6.9(S3xC8)288,22
C6.10(S3xC8) = D18:C8φ: S3xC8/C24C2 ⊆ Aut C6144C6.10(S3xC8)288,27
C6.11(S3xC8) = C2xC8xD9φ: S3xC8/C24C2 ⊆ Aut C6144C6.11(S3xC8)288,110
C6.12(S3xC8) = C16xC3:S3φ: S3xC8/C24C2 ⊆ Aut C6144C6.12(S3xC8)288,272
C6.13(S3xC8) = C48:S3φ: S3xC8/C24C2 ⊆ Aut C6144C6.13(S3xC8)288,273
C6.14(S3xC8) = C8xC3:Dic3φ: S3xC8/C24C2 ⊆ Aut C6288C6.14(S3xC8)288,288
C6.15(S3xC8) = C12.30Dic6φ: S3xC8/C24C2 ⊆ Aut C6288C6.15(S3xC8)288,289
C6.16(S3xC8) = C12.60D12φ: S3xC8/C24C2 ⊆ Aut C6144C6.16(S3xC8)288,295
C6.17(S3xC8) = S3xC3:C16φ: S3xC8/C4xS3C2 ⊆ Aut C6964C6.17(S3xC8)288,189
C6.18(S3xC8) = C24.61D6φ: S3xC8/C4xS3C2 ⊆ Aut C6964C6.18(S3xC8)288,191
C6.19(S3xC8) = Dic3xC3:C8φ: S3xC8/C4xS3C2 ⊆ Aut C696C6.19(S3xC8)288,200
C6.20(S3xC8) = C12.77D12φ: S3xC8/C4xS3C2 ⊆ Aut C696C6.20(S3xC8)288,204
C6.21(S3xC8) = C12.81D12φ: S3xC8/C4xS3C2 ⊆ Aut C696C6.21(S3xC8)288,219
C6.22(S3xC8) = S3xC48central extension (φ=1)962C6.22(S3xC8)288,231
C6.23(S3xC8) = C3xD6.C8central extension (φ=1)962C6.23(S3xC8)288,232
C6.24(S3xC8) = Dic3xC24central extension (φ=1)96C6.24(S3xC8)288,247
C6.25(S3xC8) = C3xDic3:C8central extension (φ=1)96C6.25(S3xC8)288,248
C6.26(S3xC8) = C3xD6:C8central extension (φ=1)96C6.26(S3xC8)288,254

׿
x
:
Z
F
o
wr
Q
<