Extensions 1→N→G→Q→1 with N=C2 and Q=D6⋊Dic3

Direct product G=N×Q with N=C2 and Q=D6⋊Dic3
dρLabelID
C2×D6⋊Dic396C2xD6:Dic3288,608


Non-split extensions G=N.Q with N=C2 and Q=D6⋊Dic3
extensionφ:Q→Aut NdρLabelID
C2.1(D6⋊Dic3) = C12.77D12central extension (φ=1)96C2.1(D6:Dic3)288,204
C2.2(D6⋊Dic3) = C62.6Q8central extension (φ=1)96C2.2(D6:Dic3)288,227
C2.3(D6⋊Dic3) = C12.D12central stem extension (φ=1)484C2.3(D6:Dic3)288,206
C2.4(D6⋊Dic3) = C12.14D12central stem extension (φ=1)484C2.4(D6:Dic3)288,208
C2.5(D6⋊Dic3) = D123Dic3central stem extension (φ=1)96C2.5(D6:Dic3)288,210
C2.6(D6⋊Dic3) = C6.16D24central stem extension (φ=1)96C2.6(D6:Dic3)288,211
C2.7(D6⋊Dic3) = Dic6⋊Dic3central stem extension (φ=1)96C2.7(D6:Dic3)288,213
C2.8(D6⋊Dic3) = C6.Dic12central stem extension (φ=1)96C2.8(D6:Dic3)288,214
C2.9(D6⋊Dic3) = D124Dic3central stem extension (φ=1)244C2.9(D6:Dic3)288,216
C2.10(D6⋊Dic3) = D122Dic3central stem extension (φ=1)484C2.10(D6:Dic3)288,217
C2.11(D6⋊Dic3) = C62.31D4central stem extension (φ=1)244C2.11(D6:Dic3)288,228

׿
×
𝔽