Copied to
clipboard

G = C12.D12order 288 = 25·32

13rd non-split extension by C12 of D12 acting via D12/C6=C22

metabelian, supersoluble, monomial

Aliases: C12.13D12, (C2xD12).5S3, (C6xD12).1C2, (C2xC12).71D6, (C3xC12).28D4, C4.Dic3:2S3, C6.32(D6:C4), C62.27(C2xC4), (C22xS3).Dic3, C4.9(D6:S3), C12.58D6:2C2, C3:1(C12.D4), C12.24(C3:D4), C2.3(D6:Dic3), (C6xC12).20C22, C32:2(C4.D4), C4.19(C3:D12), C3:3(C12.46D4), C22.3(S3xDic3), C6.2(C6.D4), (C2xC4).1S32, (S3xC2xC6).1C4, (C2xC6).66(C4xS3), (C2xC6).4(C2xDic3), (C3xC4.Dic3):13C2, (C3xC6).25(C22:C4), SmallGroup(288,206)

Series: Derived Chief Lower central Upper central

C1C62 — C12.D12
C1C3C32C3xC6C3xC12C6xC12C6xD12 — C12.D12
C32C3xC6C62 — C12.D12
C1C2C2xC4

Generators and relations for C12.D12
 G = < a,b,c | a12=1, b12=a6, c2=a9, bab-1=a-1, cac-1=a5, cbc-1=a3b11 >

Subgroups: 370 in 102 conjugacy classes, 34 normal (30 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C8, C2xC4, D4, C23, C32, C12, C12, D6, C2xC6, C2xC6, M4(2), C2xD4, C3xS3, C3xC6, C3xC6, C3:C8, C24, D12, C2xC12, C2xC12, C3xD4, C22xS3, C22xC6, C4.D4, C3xC12, S3xC6, C62, C4.Dic3, C4.Dic3, C3xM4(2), C2xD12, C6xD4, C3xC3:C8, C32:4C8, C3xD12, C6xC12, S3xC2xC6, C12.46D4, C12.D4, C3xC4.Dic3, C12.58D6, C6xD12, C12.D12
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, Dic3, D6, C22:C4, C4xS3, D12, C2xDic3, C3:D4, C4.D4, S32, D6:C4, C6.D4, S3xDic3, D6:S3, C3:D12, C12.46D4, C12.D4, D6:Dic3, C12.D12

Smallest permutation representation of C12.D12
On 48 points
Generators in S48
(1 11 21 7 17 3 13 23 9 19 5 15)(2 16 6 20 10 24 14 4 18 8 22 12)(25 47 45 43 41 39 37 35 33 31 29 27)(26 28 30 32 34 36 38 40 42 44 46 48)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 39 19 45 13 27 7 33)(2 32 8 26 14 44 20 38)(3 37 21 43 15 25 9 31)(4 30 10 48 16 42 22 36)(5 35 23 41 17 47 11 29)(6 28 12 46 18 40 24 34)

G:=sub<Sym(48)| (1,11,21,7,17,3,13,23,9,19,5,15)(2,16,6,20,10,24,14,4,18,8,22,12)(25,47,45,43,41,39,37,35,33,31,29,27)(26,28,30,32,34,36,38,40,42,44,46,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,39,19,45,13,27,7,33)(2,32,8,26,14,44,20,38)(3,37,21,43,15,25,9,31)(4,30,10,48,16,42,22,36)(5,35,23,41,17,47,11,29)(6,28,12,46,18,40,24,34)>;

G:=Group( (1,11,21,7,17,3,13,23,9,19,5,15)(2,16,6,20,10,24,14,4,18,8,22,12)(25,47,45,43,41,39,37,35,33,31,29,27)(26,28,30,32,34,36,38,40,42,44,46,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,39,19,45,13,27,7,33)(2,32,8,26,14,44,20,38)(3,37,21,43,15,25,9,31)(4,30,10,48,16,42,22,36)(5,35,23,41,17,47,11,29)(6,28,12,46,18,40,24,34) );

G=PermutationGroup([[(1,11,21,7,17,3,13,23,9,19,5,15),(2,16,6,20,10,24,14,4,18,8,22,12),(25,47,45,43,41,39,37,35,33,31,29,27),(26,28,30,32,34,36,38,40,42,44,46,48)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,39,19,45,13,27,7,33),(2,32,8,26,14,44,20,38),(3,37,21,43,15,25,9,31),(4,30,10,48,16,42,22,36),(5,35,23,41,17,47,11,29),(6,28,12,46,18,40,24,34)]])

39 conjugacy classes

class 1 2A2B2C2D3A3B3C4A4B6A6B6C6D6E6F6G6H6I6J6K6L8A8B8C8D12A12B12C···12I24A24B24C24D
order12222333446666666666668888121212···1224242424
size112121222422222244441212121212123636224···412121212

39 irreducible representations

dim111112222222244444444
type++++++++-+++-+-+
imageC1C2C2C2C4S3S3D4D6Dic3D12C3:D4C4xS3C4.D4S32D6:S3C3:D12S3xDic3C12.46D4C12.D4C12.D12
kernelC12.D12C3xC4.Dic3C12.58D6C6xD12S3xC2xC6C4.Dic3C2xD12C3xC12C2xC12C22xS3C12C12C2xC6C32C2xC4C4C4C22C3C3C1
# reps111141122226211111224

Matrix representation of C12.D12 in GL4(F73) generated by

24000
07000
015490
15003
,
06400
24000
1008
027700
,
10057
02760
029460
200072
G:=sub<GL(4,GF(73))| [24,0,0,15,0,70,15,0,0,0,49,0,0,0,0,3],[0,24,1,0,64,0,0,27,0,0,0,70,0,0,8,0],[1,0,0,20,0,27,29,0,0,6,46,0,57,0,0,72] >;

C12.D12 in GAP, Magma, Sage, TeX

C_{12}.D_{12}
% in TeX

G:=Group("C12.D12");
// GroupNames label

G:=SmallGroup(288,206);
// by ID

G=gap.SmallGroup(288,206);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,36,422,100,346,1356,9414]);
// Polycyclic

G:=Group<a,b,c|a^12=1,b^12=a^6,c^2=a^9,b*a*b^-1=a^-1,c*a*c^-1=a^5,c*b*c^-1=a^3*b^11>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<