Extensions 1→N→G→Q→1 with N=C2 and Q=Dic3×C2×C6

Direct product G=N×Q with N=C2 and Q=Dic3×C2×C6
dρLabelID
Dic3×C22×C696Dic3xC2^2xC6288,1001


Non-split extensions G=N.Q with N=C2 and Q=Dic3×C2×C6
extensionφ:Q→Aut NdρLabelID
C2.1(Dic3×C2×C6) = C2×C6×C3⋊C8central extension (φ=1)96C2.1(Dic3xC2xC6)288,691
C2.2(Dic3×C2×C6) = Dic3×C2×C12central extension (φ=1)96C2.2(Dic3xC2xC6)288,693
C2.3(Dic3×C2×C6) = C6×C4.Dic3central stem extension (φ=1)48C2.3(Dic3xC2xC6)288,692
C2.4(Dic3×C2×C6) = C6×C4⋊Dic3central stem extension (φ=1)96C2.4(Dic3xC2xC6)288,696
C2.5(Dic3×C2×C6) = C3×C23.26D6central stem extension (φ=1)48C2.5(Dic3xC2xC6)288,697
C2.6(Dic3×C2×C6) = C3×D4×Dic3central stem extension (φ=1)48C2.6(Dic3xC2xC6)288,705
C2.7(Dic3×C2×C6) = C3×Q8×Dic3central stem extension (φ=1)96C2.7(Dic3xC2xC6)288,716
C2.8(Dic3×C2×C6) = C3×D4.Dic3central stem extension (φ=1)484C2.8(Dic3xC2xC6)288,719
C2.9(Dic3×C2×C6) = C6×C6.D4central stem extension (φ=1)48C2.9(Dic3xC2xC6)288,723

׿
×
𝔽