Extensions 1→N→G→Q→1 with N=D4×C3⋊S3 and Q=C2

Direct product G=N×Q with N=D4×C3⋊S3 and Q=C2
dρLabelID
C2×D4×C3⋊S372C2xD4xC3:S3288,1007

Semidirect products G=N:Q with N=D4×C3⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×C3⋊S3)⋊1C2 = D12⋊D6φ: C2/C1C2 ⊆ Out D4×C3⋊S3248+(D4xC3:S3):1C2288,574
(D4×C3⋊S3)⋊2C2 = D125D6φ: C2/C1C2 ⊆ Out D4×C3⋊S3248+(D4xC3:S3):2C2288,585
(D4×C3⋊S3)⋊3C2 = D8×C3⋊S3φ: C2/C1C2 ⊆ Out D4×C3⋊S372(D4xC3:S3):3C2288,767
(D4×C3⋊S3)⋊4C2 = C248D6φ: C2/C1C2 ⊆ Out D4×C3⋊S372(D4xC3:S3):4C2288,768
(D4×C3⋊S3)⋊5C2 = C247D6φ: C2/C1C2 ⊆ Out D4×C3⋊S372(D4xC3:S3):5C2288,771
(D4×C3⋊S3)⋊6C2 = S32×D4φ: C2/C1C2 ⊆ Out D4×C3⋊S3248+(D4xC3:S3):6C2288,958
(D4×C3⋊S3)⋊7C2 = Dic612D6φ: C2/C1C2 ⊆ Out D4×C3⋊S3248+(D4xC3:S3):7C2288,960
(D4×C3⋊S3)⋊8C2 = D1213D6φ: C2/C1C2 ⊆ Out D4×C3⋊S3248+(D4xC3:S3):8C2288,962
(D4×C3⋊S3)⋊9C2 = C3282+ 1+4φ: C2/C1C2 ⊆ Out D4×C3⋊S372(D4xC3:S3):9C2288,1009
(D4×C3⋊S3)⋊10C2 = C62.154C23φ: C2/C1C2 ⊆ Out D4×C3⋊S372(D4xC3:S3):10C2288,1014
(D4×C3⋊S3)⋊11C2 = C4○D4×C3⋊S3φ: trivial image72(D4xC3:S3):11C2288,1013

Non-split extensions G=N.Q with N=D4×C3⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×C3⋊S3).1C2 = C3⋊S3.5D8φ: C2/C1C2 ⊆ Out D4×C3⋊S3248+(D4xC3:S3).1C2288,430
(D4×C3⋊S3).2C2 = Dic6⋊D6φ: C2/C1C2 ⊆ Out D4×C3⋊S3248+(D4xC3:S3).2C2288,578
(D4×C3⋊S3).3C2 = SD16×C3⋊S3φ: C2/C1C2 ⊆ Out D4×C3⋊S372(D4xC3:S3).3C2288,770
(D4×C3⋊S3).4C2 = D4×C32⋊C4φ: C2/C1C2 ⊆ Out D4×C3⋊S3248+(D4xC3:S3).4C2288,936

׿
×
𝔽