Aliases: C3⋊S3.5D8, C12⋊S3⋊1C4, D4⋊1(C32⋊C4), (D4×C32)⋊1C4, C3⋊S3.6SD16, C3⋊Dic3.10D4, C32⋊7(D4⋊C4), C2.6(C62⋊C4), (D4×C3⋊S3).1C2, C3⋊S3⋊3C8⋊1C2, C4.1(C2×C32⋊C4), C4⋊(C32⋊C4)⋊2C2, (C3×C12).1(C2×C4), (C2×C3⋊S3).51D4, (C4×C3⋊S3).5C22, (C3×C6).16(C22⋊C4), SmallGroup(288,430)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3×C6 — C2×C3⋊S3 — C4×C3⋊S3 — C4⋊(C32⋊C4) — C3⋊S3.5D8 |
Generators and relations for C3⋊S3.5D8
G = < a,b,c,d,e | a3=b3=c2=d8=1, e2=c, ab=ba, cac=a-1, dad-1=eae-1=ab-1, cbc=b-1, dbd-1=ebe-1=a-1b-1, cd=dc, ce=ec, ede-1=cd-1 >
Subgroups: 720 in 104 conjugacy classes, 18 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, C2×C4, D4, D4, C23, C32, Dic3, C12, D6, C2×C6, C4⋊C4, C2×C8, C2×D4, C3⋊S3, C3⋊S3, C3×C6, C3×C6, C4×S3, D12, C3⋊D4, C3×D4, C22×S3, D4⋊C4, C3⋊Dic3, C3×C12, C32⋊C4, C2×C3⋊S3, C2×C3⋊S3, C62, S3×D4, C32⋊2C8, C4×C3⋊S3, C12⋊S3, C32⋊7D4, D4×C32, C2×C32⋊C4, C22×C3⋊S3, C3⋊S3⋊3C8, C4⋊(C32⋊C4), D4×C3⋊S3, C3⋊S3.5D8
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, D8, SD16, D4⋊C4, C32⋊C4, C2×C32⋊C4, C62⋊C4, C3⋊S3.5D8
Character table of C3⋊S3.5D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 8A | 8B | 8C | 8D | 12A | 12B | |
size | 1 | 1 | 4 | 9 | 9 | 36 | 4 | 4 | 2 | 18 | 36 | 36 | 4 | 4 | 8 | 8 | 8 | 8 | 18 | 18 | 18 | 18 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | i | -i | -i | i | 1 | 1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | i | -i | 1 | 1 | -1 | -1 | -1 | -1 | -i | i | i | -i | 1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -i | i | 1 | 1 | -1 | -1 | -1 | -1 | i | -i | -i | i | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | -i | i | i | -i | 1 | 1 | linear of order 4 |
ρ9 | 2 | 2 | 0 | 2 | 2 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 0 | -2 | -2 | 0 | 2 | 2 | -2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 0 | -2 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | 0 | 0 | orthogonal lifted from D8 |
ρ12 | 2 | -2 | 0 | -2 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | 0 | 0 | orthogonal lifted from D8 |
ρ13 | 2 | -2 | 0 | 2 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | 0 | 0 | complex lifted from SD16 |
ρ14 | 2 | -2 | 0 | 2 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | 0 | 0 | complex lifted from SD16 |
ρ15 | 4 | 4 | -4 | 0 | 0 | 0 | 1 | -2 | 4 | 0 | 0 | 0 | -2 | 1 | 2 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | -2 | 1 | orthogonal lifted from C2×C32⋊C4 |
ρ16 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | 1 | -4 | 0 | 0 | 0 | 1 | -2 | 3 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | -1 | 2 | orthogonal lifted from C62⋊C4 |
ρ17 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | 1 | -4 | 0 | 0 | 0 | 1 | -2 | -3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | -1 | 2 | orthogonal lifted from C62⋊C4 |
ρ18 | 4 | 4 | 4 | 0 | 0 | 0 | 1 | -2 | 4 | 0 | 0 | 0 | -2 | 1 | -2 | 1 | 1 | -2 | 0 | 0 | 0 | 0 | -2 | 1 | orthogonal lifted from C32⋊C4 |
ρ19 | 4 | 4 | 0 | 0 | 0 | 0 | 1 | -2 | -4 | 0 | 0 | 0 | -2 | 1 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | orthogonal lifted from C62⋊C4 |
ρ20 | 4 | 4 | -4 | 0 | 0 | 0 | -2 | 1 | 4 | 0 | 0 | 0 | 1 | -2 | -1 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 1 | -2 | orthogonal lifted from C2×C32⋊C4 |
ρ21 | 4 | 4 | 4 | 0 | 0 | 0 | -2 | 1 | 4 | 0 | 0 | 0 | 1 | -2 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 1 | -2 | orthogonal lifted from C32⋊C4 |
ρ22 | 4 | 4 | 0 | 0 | 0 | 0 | 1 | -2 | -4 | 0 | 0 | 0 | -2 | 1 | 0 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | orthogonal lifted from C62⋊C4 |
ρ23 | 8 | -8 | 0 | 0 | 0 | 0 | 2 | -4 | 0 | 0 | 0 | 0 | 4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ24 | 8 | -8 | 0 | 0 | 0 | 0 | -4 | 2 | 0 | 0 | 0 | 0 | -2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 15 21)(3 23 9)(5 11 17)(7 19 13)
(1 15 21)(2 16 22)(3 23 9)(4 24 10)(5 11 17)(6 12 18)(7 19 13)(8 20 14)
(9 23)(10 24)(11 17)(12 18)(13 19)(14 20)(15 21)(16 22)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(1 8)(2 7)(3 6)(4 5)(9 18 23 12)(10 11 24 17)(13 22 19 16)(14 15 20 21)
G:=sub<Sym(24)| (1,15,21)(3,23,9)(5,11,17)(7,19,13), (1,15,21)(2,16,22)(3,23,9)(4,24,10)(5,11,17)(6,12,18)(7,19,13)(8,20,14), (9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,18,23,12)(10,11,24,17)(13,22,19,16)(14,15,20,21)>;
G:=Group( (1,15,21)(3,23,9)(5,11,17)(7,19,13), (1,15,21)(2,16,22)(3,23,9)(4,24,10)(5,11,17)(6,12,18)(7,19,13)(8,20,14), (9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,18,23,12)(10,11,24,17)(13,22,19,16)(14,15,20,21) );
G=PermutationGroup([[(1,15,21),(3,23,9),(5,11,17),(7,19,13)], [(1,15,21),(2,16,22),(3,23,9),(4,24,10),(5,11,17),(6,12,18),(7,19,13),(8,20,14)], [(9,23),(10,24),(11,17),(12,18),(13,19),(14,20),(15,21),(16,22)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(1,8),(2,7),(3,6),(4,5),(9,18,23,12),(10,11,24,17),(13,22,19,16),(14,15,20,21)]])
G:=TransitiveGroup(24,676);
(1 13 22)(2 14 23)(3 24 15)(4 17 16)(5 9 18)(6 10 19)(7 20 11)(8 21 12)
(2 23 14)(4 16 17)(6 19 10)(8 12 21)
(1 5)(2 6)(3 7)(4 8)(9 22)(10 23)(11 24)(12 17)(13 18)(14 19)(15 20)(16 21)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(1 4 5 8)(2 7 6 3)(9 21 22 16)(10 15 23 20)(11 19 24 14)(12 13 17 18)
G:=sub<Sym(24)| (1,13,22)(2,14,23)(3,24,15)(4,17,16)(5,9,18)(6,10,19)(7,20,11)(8,21,12), (2,23,14)(4,16,17)(6,19,10)(8,12,21), (1,5)(2,6)(3,7)(4,8)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,4,5,8)(2,7,6,3)(9,21,22,16)(10,15,23,20)(11,19,24,14)(12,13,17,18)>;
G:=Group( (1,13,22)(2,14,23)(3,24,15)(4,17,16)(5,9,18)(6,10,19)(7,20,11)(8,21,12), (2,23,14)(4,16,17)(6,19,10)(8,12,21), (1,5)(2,6)(3,7)(4,8)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,4,5,8)(2,7,6,3)(9,21,22,16)(10,15,23,20)(11,19,24,14)(12,13,17,18) );
G=PermutationGroup([[(1,13,22),(2,14,23),(3,24,15),(4,17,16),(5,9,18),(6,10,19),(7,20,11),(8,21,12)], [(2,23,14),(4,16,17),(6,19,10),(8,12,21)], [(1,5),(2,6),(3,7),(4,8),(9,22),(10,23),(11,24),(12,17),(13,18),(14,19),(15,20),(16,21)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(1,4,5,8),(2,7,6,3),(9,21,22,16),(10,15,23,20),(11,19,24,14),(12,13,17,18)]])
G:=TransitiveGroup(24,677);
Matrix representation of C3⋊S3.5D8 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 72 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 72 | 72 |
61 | 67 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 71 | 72 |
0 | 0 | 49 | 49 | 0 | 0 |
0 | 0 | 49 | 48 | 0 | 0 |
0 | 6 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 72 |
0 | 0 | 0 | 0 | 2 | 1 |
0 | 0 | 49 | 49 | 0 | 0 |
0 | 0 | 49 | 48 | 0 | 0 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,1,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,72,0,0,0,0,0,72],[61,12,0,0,0,0,67,0,0,0,0,0,0,0,0,0,49,49,0,0,0,0,49,48,0,0,72,71,0,0,0,0,1,72,0,0],[0,12,0,0,0,0,6,0,0,0,0,0,0,0,0,0,49,49,0,0,0,0,49,48,0,0,1,2,0,0,0,0,72,1,0,0] >;
C3⋊S3.5D8 in GAP, Magma, Sage, TeX
C_3\rtimes S_3._5D_8
% in TeX
G:=Group("C3:S3.5D8");
// GroupNames label
G:=SmallGroup(288,430);
// by ID
G=gap.SmallGroup(288,430);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,28,141,675,346,80,9413,691,12550,2372]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^2=d^8=1,e^2=c,a*b=b*a,c*a*c=a^-1,d*a*d^-1=e*a*e^-1=a*b^-1,c*b*c=b^-1,d*b*d^-1=e*b*e^-1=a^-1*b^-1,c*d=d*c,c*e=e*c,e*d*e^-1=c*d^-1>;
// generators/relations
Export