extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×Dic3⋊C4)⋊1C2 = C62.6C23 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 48 | | (C3xDic3:C4):1C2 | 288,484 |
(C3×Dic3⋊C4)⋊2C2 = C62.18C23 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 48 | | (C3xDic3:C4):2C2 | 288,496 |
(C3×Dic3⋊C4)⋊3C2 = C62.20C23 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 48 | | (C3xDic3:C4):3C2 | 288,498 |
(C3×Dic3⋊C4)⋊4C2 = D6⋊Dic6 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4):4C2 | 288,499 |
(C3×Dic3⋊C4)⋊5C2 = C62.23C23 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 48 | | (C3xDic3:C4):5C2 | 288,501 |
(C3×Dic3⋊C4)⋊6C2 = C62.31C23 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4):6C2 | 288,509 |
(C3×Dic3⋊C4)⋊7C2 = C62.32C23 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4):7C2 | 288,510 |
(C3×Dic3⋊C4)⋊8C2 = C62.35C23 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 48 | | (C3xDic3:C4):8C2 | 288,513 |
(C3×Dic3⋊C4)⋊9C2 = C62.38C23 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 48 | | (C3xDic3:C4):9C2 | 288,516 |
(C3×Dic3⋊C4)⋊10C2 = S3×Dic3⋊C4 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4):10C2 | 288,524 |
(C3×Dic3⋊C4)⋊11C2 = C62.48C23 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4):11C2 | 288,526 |
(C3×Dic3⋊C4)⋊12C2 = C62.51C23 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 48 | | (C3xDic3:C4):12C2 | 288,529 |
(C3×Dic3⋊C4)⋊13C2 = C62.53C23 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 48 | | (C3xDic3:C4):13C2 | 288,531 |
(C3×Dic3⋊C4)⋊14C2 = C62.54C23 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4):14C2 | 288,532 |
(C3×Dic3⋊C4)⋊15C2 = Dic3⋊D12 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 48 | | (C3xDic3:C4):15C2 | 288,534 |
(C3×Dic3⋊C4)⋊16C2 = C62.58C23 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 48 | | (C3xDic3:C4):16C2 | 288,536 |
(C3×Dic3⋊C4)⋊17C2 = D6⋊2Dic6 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4):17C2 | 288,541 |
(C3×Dic3⋊C4)⋊18C2 = C62.65C23 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 48 | | (C3xDic3:C4):18C2 | 288,543 |
(C3×Dic3⋊C4)⋊19C2 = D6⋊3Dic6 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4):19C2 | 288,544 |
(C3×Dic3⋊C4)⋊20C2 = C62.67C23 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 48 | | (C3xDic3:C4):20C2 | 288,545 |
(C3×Dic3⋊C4)⋊21C2 = C62.74C23 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 48 | | (C3xDic3:C4):21C2 | 288,552 |
(C3×Dic3⋊C4)⋊22C2 = Dic3⋊3D12 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 48 | | (C3xDic3:C4):22C2 | 288,558 |
(C3×Dic3⋊C4)⋊23C2 = C3×Dic3.D4 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 48 | | (C3xDic3:C4):23C2 | 288,649 |
(C3×Dic3⋊C4)⋊24C2 = C3×Dic3⋊D4 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 48 | | (C3xDic3:C4):24C2 | 288,655 |
(C3×Dic3⋊C4)⋊25C2 = C3×D6.D4 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4):25C2 | 288,665 |
(C3×Dic3⋊C4)⋊26C2 = C3×C23.16D6 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 48 | | (C3xDic3:C4):26C2 | 288,648 |
(C3×Dic3⋊C4)⋊27C2 = C3×C23.8D6 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 48 | | (C3xDic3:C4):27C2 | 288,650 |
(C3×Dic3⋊C4)⋊28C2 = C3×Dic3⋊4D4 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 48 | | (C3xDic3:C4):28C2 | 288,652 |
(C3×Dic3⋊C4)⋊29C2 = C3×C23.9D6 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 48 | | (C3xDic3:C4):29C2 | 288,654 |
(C3×Dic3⋊C4)⋊30C2 = C3×S3×C4⋊C4 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4):30C2 | 288,662 |
(C3×Dic3⋊C4)⋊31C2 = C3×D6⋊Q8 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4):31C2 | 288,667 |
(C3×Dic3⋊C4)⋊32C2 = C3×C42⋊3S3 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4):32C2 | 288,647 |
(C3×Dic3⋊C4)⋊33C2 = C3×C4⋊C4⋊S3 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4):33C2 | 288,669 |
(C3×Dic3⋊C4)⋊34C2 = C3×C12.48D4 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 48 | | (C3xDic3:C4):34C2 | 288,695 |
(C3×Dic3⋊C4)⋊35C2 = C3×C23.28D6 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 48 | | (C3xDic3:C4):35C2 | 288,700 |
(C3×Dic3⋊C4)⋊36C2 = C3×C23.23D6 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 48 | | (C3xDic3:C4):36C2 | 288,706 |
(C3×Dic3⋊C4)⋊37C2 = C3×C23.14D6 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 48 | | (C3xDic3:C4):37C2 | 288,710 |
(C3×Dic3⋊C4)⋊38C2 = C3×D6⋊3Q8 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4):38C2 | 288,717 |
(C3×Dic3⋊C4)⋊39C2 = C3×C42⋊2S3 | φ: trivial image | 96 | | (C3xDic3:C4):39C2 | 288,643 |
(C3×Dic3⋊C4)⋊40C2 = C12×C3⋊D4 | φ: trivial image | 48 | | (C3xDic3:C4):40C2 | 288,699 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×Dic3⋊C4).1C2 = Dic3⋊5Dic6 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4).1C2 | 288,485 |
(C3×Dic3⋊C4).2C2 = C62.8C23 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4).2C2 | 288,486 |
(C3×Dic3⋊C4).3C2 = C62.9C23 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4).3C2 | 288,487 |
(C3×Dic3⋊C4).4C2 = C62.10C23 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4).4C2 | 288,488 |
(C3×Dic3⋊C4).5C2 = Dic3.Dic6 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4).5C2 | 288,493 |
(C3×Dic3⋊C4).6C2 = C62.16C23 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4).6C2 | 288,494 |
(C3×Dic3⋊C4).7C2 = C62.17C23 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4).7C2 | 288,495 |
(C3×Dic3⋊C4).8C2 = C62.37C23 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4).8C2 | 288,515 |
(C3×Dic3⋊C4).9C2 = C62.40C23 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4).9C2 | 288,518 |
(C3×Dic3⋊C4).10C2 = C3×C12⋊Q8 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4).10C2 | 288,659 |
(C3×Dic3⋊C4).11C2 = C3×C4.Dic6 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4).11C2 | 288,661 |
(C3×Dic3⋊C4).12C2 = C3×Dic6⋊C4 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4).12C2 | 288,658 |
(C3×Dic3⋊C4).13C2 = C3×C12.6Q8 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4).13C2 | 288,641 |
(C3×Dic3⋊C4).14C2 = C3×Dic3.Q8 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4).14C2 | 288,660 |
(C3×Dic3⋊C4).15C2 = C3×Dic3⋊Q8 | φ: C2/C1 → C2 ⊆ Out C3×Dic3⋊C4 | 96 | | (C3xDic3:C4).15C2 | 288,715 |
(C3×Dic3⋊C4).16C2 = C12×Dic6 | φ: trivial image | 96 | | (C3xDic3:C4).16C2 | 288,639 |