Extensions 1→N→G→Q→1 with N=C3×Dic3⋊C4 and Q=C2

Direct product G=N×Q with N=C3×Dic3⋊C4 and Q=C2
dρLabelID
C6×Dic3⋊C496C6xDic3:C4288,694

Semidirect products G=N:Q with N=C3×Dic3⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic3⋊C4)⋊1C2 = C62.6C23φ: C2/C1C2 ⊆ Out C3×Dic3⋊C448(C3xDic3:C4):1C2288,484
(C3×Dic3⋊C4)⋊2C2 = C62.18C23φ: C2/C1C2 ⊆ Out C3×Dic3⋊C448(C3xDic3:C4):2C2288,496
(C3×Dic3⋊C4)⋊3C2 = C62.20C23φ: C2/C1C2 ⊆ Out C3×Dic3⋊C448(C3xDic3:C4):3C2288,498
(C3×Dic3⋊C4)⋊4C2 = D6⋊Dic6φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4):4C2288,499
(C3×Dic3⋊C4)⋊5C2 = C62.23C23φ: C2/C1C2 ⊆ Out C3×Dic3⋊C448(C3xDic3:C4):5C2288,501
(C3×Dic3⋊C4)⋊6C2 = C62.31C23φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4):6C2288,509
(C3×Dic3⋊C4)⋊7C2 = C62.32C23φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4):7C2288,510
(C3×Dic3⋊C4)⋊8C2 = C62.35C23φ: C2/C1C2 ⊆ Out C3×Dic3⋊C448(C3xDic3:C4):8C2288,513
(C3×Dic3⋊C4)⋊9C2 = C62.38C23φ: C2/C1C2 ⊆ Out C3×Dic3⋊C448(C3xDic3:C4):9C2288,516
(C3×Dic3⋊C4)⋊10C2 = S3×Dic3⋊C4φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4):10C2288,524
(C3×Dic3⋊C4)⋊11C2 = C62.48C23φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4):11C2288,526
(C3×Dic3⋊C4)⋊12C2 = C62.51C23φ: C2/C1C2 ⊆ Out C3×Dic3⋊C448(C3xDic3:C4):12C2288,529
(C3×Dic3⋊C4)⋊13C2 = C62.53C23φ: C2/C1C2 ⊆ Out C3×Dic3⋊C448(C3xDic3:C4):13C2288,531
(C3×Dic3⋊C4)⋊14C2 = C62.54C23φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4):14C2288,532
(C3×Dic3⋊C4)⋊15C2 = Dic3⋊D12φ: C2/C1C2 ⊆ Out C3×Dic3⋊C448(C3xDic3:C4):15C2288,534
(C3×Dic3⋊C4)⋊16C2 = C62.58C23φ: C2/C1C2 ⊆ Out C3×Dic3⋊C448(C3xDic3:C4):16C2288,536
(C3×Dic3⋊C4)⋊17C2 = D62Dic6φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4):17C2288,541
(C3×Dic3⋊C4)⋊18C2 = C62.65C23φ: C2/C1C2 ⊆ Out C3×Dic3⋊C448(C3xDic3:C4):18C2288,543
(C3×Dic3⋊C4)⋊19C2 = D63Dic6φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4):19C2288,544
(C3×Dic3⋊C4)⋊20C2 = C62.67C23φ: C2/C1C2 ⊆ Out C3×Dic3⋊C448(C3xDic3:C4):20C2288,545
(C3×Dic3⋊C4)⋊21C2 = C62.74C23φ: C2/C1C2 ⊆ Out C3×Dic3⋊C448(C3xDic3:C4):21C2288,552
(C3×Dic3⋊C4)⋊22C2 = Dic33D12φ: C2/C1C2 ⊆ Out C3×Dic3⋊C448(C3xDic3:C4):22C2288,558
(C3×Dic3⋊C4)⋊23C2 = C3×Dic3.D4φ: C2/C1C2 ⊆ Out C3×Dic3⋊C448(C3xDic3:C4):23C2288,649
(C3×Dic3⋊C4)⋊24C2 = C3×Dic3⋊D4φ: C2/C1C2 ⊆ Out C3×Dic3⋊C448(C3xDic3:C4):24C2288,655
(C3×Dic3⋊C4)⋊25C2 = C3×D6.D4φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4):25C2288,665
(C3×Dic3⋊C4)⋊26C2 = C3×C23.16D6φ: C2/C1C2 ⊆ Out C3×Dic3⋊C448(C3xDic3:C4):26C2288,648
(C3×Dic3⋊C4)⋊27C2 = C3×C23.8D6φ: C2/C1C2 ⊆ Out C3×Dic3⋊C448(C3xDic3:C4):27C2288,650
(C3×Dic3⋊C4)⋊28C2 = C3×Dic34D4φ: C2/C1C2 ⊆ Out C3×Dic3⋊C448(C3xDic3:C4):28C2288,652
(C3×Dic3⋊C4)⋊29C2 = C3×C23.9D6φ: C2/C1C2 ⊆ Out C3×Dic3⋊C448(C3xDic3:C4):29C2288,654
(C3×Dic3⋊C4)⋊30C2 = C3×S3×C4⋊C4φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4):30C2288,662
(C3×Dic3⋊C4)⋊31C2 = C3×D6⋊Q8φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4):31C2288,667
(C3×Dic3⋊C4)⋊32C2 = C3×C423S3φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4):32C2288,647
(C3×Dic3⋊C4)⋊33C2 = C3×C4⋊C4⋊S3φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4):33C2288,669
(C3×Dic3⋊C4)⋊34C2 = C3×C12.48D4φ: C2/C1C2 ⊆ Out C3×Dic3⋊C448(C3xDic3:C4):34C2288,695
(C3×Dic3⋊C4)⋊35C2 = C3×C23.28D6φ: C2/C1C2 ⊆ Out C3×Dic3⋊C448(C3xDic3:C4):35C2288,700
(C3×Dic3⋊C4)⋊36C2 = C3×C23.23D6φ: C2/C1C2 ⊆ Out C3×Dic3⋊C448(C3xDic3:C4):36C2288,706
(C3×Dic3⋊C4)⋊37C2 = C3×C23.14D6φ: C2/C1C2 ⊆ Out C3×Dic3⋊C448(C3xDic3:C4):37C2288,710
(C3×Dic3⋊C4)⋊38C2 = C3×D63Q8φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4):38C2288,717
(C3×Dic3⋊C4)⋊39C2 = C3×C422S3φ: trivial image96(C3xDic3:C4):39C2288,643
(C3×Dic3⋊C4)⋊40C2 = C12×C3⋊D4φ: trivial image48(C3xDic3:C4):40C2288,699

Non-split extensions G=N.Q with N=C3×Dic3⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic3⋊C4).1C2 = Dic35Dic6φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4).1C2288,485
(C3×Dic3⋊C4).2C2 = C62.8C23φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4).2C2288,486
(C3×Dic3⋊C4).3C2 = C62.9C23φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4).3C2288,487
(C3×Dic3⋊C4).4C2 = C62.10C23φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4).4C2288,488
(C3×Dic3⋊C4).5C2 = Dic3.Dic6φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4).5C2288,493
(C3×Dic3⋊C4).6C2 = C62.16C23φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4).6C2288,494
(C3×Dic3⋊C4).7C2 = C62.17C23φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4).7C2288,495
(C3×Dic3⋊C4).8C2 = C62.37C23φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4).8C2288,515
(C3×Dic3⋊C4).9C2 = C62.40C23φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4).9C2288,518
(C3×Dic3⋊C4).10C2 = C3×C12⋊Q8φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4).10C2288,659
(C3×Dic3⋊C4).11C2 = C3×C4.Dic6φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4).11C2288,661
(C3×Dic3⋊C4).12C2 = C3×Dic6⋊C4φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4).12C2288,658
(C3×Dic3⋊C4).13C2 = C3×C12.6Q8φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4).13C2288,641
(C3×Dic3⋊C4).14C2 = C3×Dic3.Q8φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4).14C2288,660
(C3×Dic3⋊C4).15C2 = C3×Dic3⋊Q8φ: C2/C1C2 ⊆ Out C3×Dic3⋊C496(C3xDic3:C4).15C2288,715
(C3×Dic3⋊C4).16C2 = C12×Dic6φ: trivial image96(C3xDic3:C4).16C2288,639

׿
×
𝔽