Copied to
clipboard

G = D6:Dic6order 288 = 25·32

1st semidirect product of D6 and Dic6 acting via Dic6/C12=C2

metabelian, supersoluble, monomial

Aliases: D6:5Dic6, C62.21C23, (S3xC6):5Q8, C6.20(S3xQ8), Dic3:C4:2S3, C6.135(S3xD4), C6.8(C2xDic6), C3:7(D6:Q8), (C2xC12).258D6, (C2xDic3).8D6, C2.10(S3xDic6), C6.19(C4oD12), C32:3(C22:Q8), D6:Dic3.11C2, (C3xDic3).33D4, (C22xS3).60D6, Dic3:Dic3:31C2, C3:1(C12.48D4), (C6xC12).212C22, C6.Dic6:12C2, C2.7(D6.D6), Dic3.14(C3:D4), (C6xDic3).74C22, (C2xC4).40S32, (S3xC2xC4).9S3, (S3xC2xC12).2C2, C22.79(C2xS32), (C3xC6).79(C2xD4), C2.10(S3xC3:D4), C6.28(C2xC3:D4), (C3xC6).16(C2xQ8), (C3xDic3:C4):4C2, (C2xC32:2Q8):1C2, (S3xC2xC6).70C22, (C3xC6).10(C4oD4), (C2xC6).40(C22xS3), (C2xC3:Dic3).21C22, SmallGroup(288,499)

Series: Derived Chief Lower central Upper central

C1C62 — D6:Dic6
C1C3C32C3xC6C62S3xC2xC6D6:Dic3 — D6:Dic6
C32C62 — D6:Dic6
C1C22C2xC4

Generators and relations for D6:Dic6
 G = < a,b,c,d | a6=b2=c12=1, d2=c6, bab=cac-1=dad-1=a-1, cbc-1=a4b, dbd-1=ab, dcd-1=c-1 >

Subgroups: 554 in 161 conjugacy classes, 52 normal (44 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, Q8, C23, C32, Dic3, Dic3, C12, D6, D6, C2xC6, C2xC6, C22:C4, C4:C4, C22xC4, C2xQ8, C3xS3, C3xC6, Dic6, C4xS3, C2xDic3, C2xDic3, C2xC12, C2xC12, C22xS3, C22xC6, C22:Q8, C3xDic3, C3xDic3, C3:Dic3, C3xC12, S3xC6, S3xC6, C62, Dic3:C4, Dic3:C4, C4:Dic3, D6:C4, C6.D4, C3xC4:C4, C2xDic6, S3xC2xC4, C22xC12, C32:2Q8, S3xC12, C6xDic3, C2xC3:Dic3, C6xC12, S3xC2xC6, D6:Q8, C12.48D4, D6:Dic3, Dic3:Dic3, C3xDic3:C4, C6.Dic6, C2xC32:2Q8, S3xC2xC12, D6:Dic6
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2xD4, C2xQ8, C4oD4, Dic6, C3:D4, C22xS3, C22:Q8, S32, C2xDic6, C4oD12, S3xD4, S3xQ8, C2xC3:D4, C2xS32, D6:Q8, C12.48D4, S3xDic6, D6.D6, S3xC3:D4, D6:Dic6

Smallest permutation representation of D6:Dic6
On 96 points
Generators in S96
(1 96 9 92 5 88)(2 89 6 93 10 85)(3 86 11 94 7 90)(4 91 8 95 12 87)(13 29 21 25 17 33)(14 34 18 26 22 30)(15 31 23 27 19 35)(16 36 20 28 24 32)(37 52 45 60 41 56)(38 57 42 49 46 53)(39 54 47 50 43 58)(40 59 44 51 48 55)(61 75 65 79 69 83)(62 84 70 80 66 76)(63 77 67 81 71 73)(64 74 72 82 68 78)
(1 49)(2 54)(3 51)(4 56)(5 53)(6 58)(7 55)(8 60)(9 57)(10 50)(11 59)(12 52)(13 61)(14 66)(15 63)(16 68)(17 65)(18 70)(19 67)(20 72)(21 69)(22 62)(23 71)(24 64)(25 79)(26 84)(27 81)(28 74)(29 83)(30 76)(31 73)(32 78)(33 75)(34 80)(35 77)(36 82)(37 87)(38 92)(39 89)(40 94)(41 91)(42 96)(43 93)(44 86)(45 95)(46 88)(47 85)(48 90)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 23 7 17)(2 22 8 16)(3 21 9 15)(4 20 10 14)(5 19 11 13)(6 18 12 24)(25 96 31 90)(26 95 32 89)(27 94 33 88)(28 93 34 87)(29 92 35 86)(30 91 36 85)(37 64 43 70)(38 63 44 69)(39 62 45 68)(40 61 46 67)(41 72 47 66)(42 71 48 65)(49 81 55 75)(50 80 56 74)(51 79 57 73)(52 78 58 84)(53 77 59 83)(54 76 60 82)

G:=sub<Sym(96)| (1,96,9,92,5,88)(2,89,6,93,10,85)(3,86,11,94,7,90)(4,91,8,95,12,87)(13,29,21,25,17,33)(14,34,18,26,22,30)(15,31,23,27,19,35)(16,36,20,28,24,32)(37,52,45,60,41,56)(38,57,42,49,46,53)(39,54,47,50,43,58)(40,59,44,51,48,55)(61,75,65,79,69,83)(62,84,70,80,66,76)(63,77,67,81,71,73)(64,74,72,82,68,78), (1,49)(2,54)(3,51)(4,56)(5,53)(6,58)(7,55)(8,60)(9,57)(10,50)(11,59)(12,52)(13,61)(14,66)(15,63)(16,68)(17,65)(18,70)(19,67)(20,72)(21,69)(22,62)(23,71)(24,64)(25,79)(26,84)(27,81)(28,74)(29,83)(30,76)(31,73)(32,78)(33,75)(34,80)(35,77)(36,82)(37,87)(38,92)(39,89)(40,94)(41,91)(42,96)(43,93)(44,86)(45,95)(46,88)(47,85)(48,90), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,23,7,17)(2,22,8,16)(3,21,9,15)(4,20,10,14)(5,19,11,13)(6,18,12,24)(25,96,31,90)(26,95,32,89)(27,94,33,88)(28,93,34,87)(29,92,35,86)(30,91,36,85)(37,64,43,70)(38,63,44,69)(39,62,45,68)(40,61,46,67)(41,72,47,66)(42,71,48,65)(49,81,55,75)(50,80,56,74)(51,79,57,73)(52,78,58,84)(53,77,59,83)(54,76,60,82)>;

G:=Group( (1,96,9,92,5,88)(2,89,6,93,10,85)(3,86,11,94,7,90)(4,91,8,95,12,87)(13,29,21,25,17,33)(14,34,18,26,22,30)(15,31,23,27,19,35)(16,36,20,28,24,32)(37,52,45,60,41,56)(38,57,42,49,46,53)(39,54,47,50,43,58)(40,59,44,51,48,55)(61,75,65,79,69,83)(62,84,70,80,66,76)(63,77,67,81,71,73)(64,74,72,82,68,78), (1,49)(2,54)(3,51)(4,56)(5,53)(6,58)(7,55)(8,60)(9,57)(10,50)(11,59)(12,52)(13,61)(14,66)(15,63)(16,68)(17,65)(18,70)(19,67)(20,72)(21,69)(22,62)(23,71)(24,64)(25,79)(26,84)(27,81)(28,74)(29,83)(30,76)(31,73)(32,78)(33,75)(34,80)(35,77)(36,82)(37,87)(38,92)(39,89)(40,94)(41,91)(42,96)(43,93)(44,86)(45,95)(46,88)(47,85)(48,90), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,23,7,17)(2,22,8,16)(3,21,9,15)(4,20,10,14)(5,19,11,13)(6,18,12,24)(25,96,31,90)(26,95,32,89)(27,94,33,88)(28,93,34,87)(29,92,35,86)(30,91,36,85)(37,64,43,70)(38,63,44,69)(39,62,45,68)(40,61,46,67)(41,72,47,66)(42,71,48,65)(49,81,55,75)(50,80,56,74)(51,79,57,73)(52,78,58,84)(53,77,59,83)(54,76,60,82) );

G=PermutationGroup([[(1,96,9,92,5,88),(2,89,6,93,10,85),(3,86,11,94,7,90),(4,91,8,95,12,87),(13,29,21,25,17,33),(14,34,18,26,22,30),(15,31,23,27,19,35),(16,36,20,28,24,32),(37,52,45,60,41,56),(38,57,42,49,46,53),(39,54,47,50,43,58),(40,59,44,51,48,55),(61,75,65,79,69,83),(62,84,70,80,66,76),(63,77,67,81,71,73),(64,74,72,82,68,78)], [(1,49),(2,54),(3,51),(4,56),(5,53),(6,58),(7,55),(8,60),(9,57),(10,50),(11,59),(12,52),(13,61),(14,66),(15,63),(16,68),(17,65),(18,70),(19,67),(20,72),(21,69),(22,62),(23,71),(24,64),(25,79),(26,84),(27,81),(28,74),(29,83),(30,76),(31,73),(32,78),(33,75),(34,80),(35,77),(36,82),(37,87),(38,92),(39,89),(40,94),(41,91),(42,96),(43,93),(44,86),(45,95),(46,88),(47,85),(48,90)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,23,7,17),(2,22,8,16),(3,21,9,15),(4,20,10,14),(5,19,11,13),(6,18,12,24),(25,96,31,90),(26,95,32,89),(27,94,33,88),(28,93,34,87),(29,92,35,86),(30,91,36,85),(37,64,43,70),(38,63,44,69),(39,62,45,68),(40,61,46,67),(41,72,47,66),(42,71,48,65),(49,81,55,75),(50,80,56,74),(51,79,57,73),(52,78,58,84),(53,77,59,83),(54,76,60,82)]])

48 conjugacy classes

class 1 2A2B2C2D2E3A3B3C4A4B4C4D4E4F4G4H6A···6F6G6H6I6J6K6L6M12A12B12C12D12E···12J12K12L12M12N12O12P12Q12R
order122222333444444446···666666661212121212···121212121212121212
size1111662242266121236362···2444666622224···4666612121212

48 irreducible representations

dim1111111222222222224444444
type++++++++++-+++-++-+-
imageC1C2C2C2C2C2C2S3S3D4Q8D6D6D6C4oD4C3:D4Dic6C4oD12S32S3xD4S3xQ8C2xS32S3xDic6D6.D6S3xC3:D4
kernelD6:Dic6D6:Dic3Dic3:Dic3C3xDic3:C4C6.Dic6C2xC32:2Q8S3xC2xC12Dic3:C4S3xC2xC4C3xDic3S3xC6C2xDic3C2xC12C22xS3C3xC6Dic3D6C6C2xC4C6C6C22C2C2C2
# reps1211111112232124481111222

Matrix representation of D6:Dic6 in GL6(F13)

1200000
0120000
001000
000100
0000121
0000120
,
290000
4110000
0012000
0001200
0000120
0000121
,
730000
10100000
0010300
0010700
000001
000010
,
11110000
920000
002400
0021100
000001
000010

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[2,4,0,0,0,0,9,11,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,12,0,0,0,0,0,1],[7,10,0,0,0,0,3,10,0,0,0,0,0,0,10,10,0,0,0,0,3,7,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[11,9,0,0,0,0,11,2,0,0,0,0,0,0,2,2,0,0,0,0,4,11,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

D6:Dic6 in GAP, Magma, Sage, TeX

D_6\rtimes {\rm Dic}_6
% in TeX

G:=Group("D6:Dic6");
// GroupNames label

G:=SmallGroup(288,499);
// by ID

G=gap.SmallGroup(288,499);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,120,219,142,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^12=1,d^2=c^6,b*a*b=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^4*b,d*b*d^-1=a*b,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<