Extensions 1→N→G→Q→1 with N=C3 and Q=C2×C8⋊S3

Direct product G=N×Q with N=C3 and Q=C2×C8⋊S3
dρLabelID
C6×C8⋊S396C6xC8:S3288,671

Semidirect products G=N:Q with N=C3 and Q=C2×C8⋊S3
extensionφ:Q→Aut NdρLabelID
C31(C2×C8⋊S3) = S3×C8⋊S3φ: C2×C8⋊S3/C8⋊S3C2 ⊆ Aut C3484C3:1(C2xC8:S3)288,438
C32(C2×C8⋊S3) = C2×C12.31D6φ: C2×C8⋊S3/C2×C3⋊C8C2 ⊆ Aut C348C3:2(C2xC8:S3)288,468
C33(C2×C8⋊S3) = C2×C24⋊S3φ: C2×C8⋊S3/C2×C24C2 ⊆ Aut C3144C3:3(C2xC8:S3)288,757
C34(C2×C8⋊S3) = C2×D6.Dic3φ: C2×C8⋊S3/S3×C2×C4C2 ⊆ Aut C396C3:4(C2xC8:S3)288,467

Non-split extensions G=N.Q with N=C3 and Q=C2×C8⋊S3
extensionφ:Q→Aut NdρLabelID
C3.(C2×C8⋊S3) = C2×C8⋊D9φ: C2×C8⋊S3/C2×C24C2 ⊆ Aut C3144C3.(C2xC8:S3)288,111

׿
×
𝔽