Extensions 1→N→G→Q→1 with N=C2 and Q=C6×S4

Direct product G=N×Q with N=C2 and Q=C6×S4
dρLabelID
C2×C6×S436C2xC6xS4288,1033


Non-split extensions G=N.Q with N=C2 and Q=C6×S4
extensionφ:Q→Aut NdρLabelID
C2.1(C6×S4) = C12×S4central extension (φ=1)363C2.1(C6xS4)288,897
C2.2(C6×S4) = C6×A4⋊C4central extension (φ=1)72C2.2(C6xS4)288,905
C2.3(C6×S4) = C3×A4⋊Q8central stem extension (φ=1)726C2.3(C6xS4)288,896
C2.4(C6×S4) = C3×C4⋊S4central stem extension (φ=1)366C2.4(C6xS4)288,898
C2.5(C6×S4) = C6×CSU2(𝔽3)central stem extension (φ=1)96C2.5(C6xS4)288,899
C2.6(C6×S4) = C6×GL2(𝔽3)central stem extension (φ=1)48C2.6(C6xS4)288,900
C2.7(C6×S4) = C3×Q8.D6central stem extension (φ=1)484C2.7(C6xS4)288,901
C2.8(C6×S4) = C3×C4.S4central stem extension (φ=1)964C2.8(C6xS4)288,902
C2.9(C6×S4) = C3×C4.6S4central stem extension (φ=1)482C2.9(C6xS4)288,903
C2.10(C6×S4) = C3×C4.3S4central stem extension (φ=1)484C2.10(C6xS4)288,904
C2.11(C6×S4) = C3×A4⋊D4central stem extension (φ=1)366C2.11(C6xS4)288,906

׿
×
𝔽