Extensions 1→N→G→Q→1 with N=C2×Dic3 and Q=C12

Direct product G=N×Q with N=C2×Dic3 and Q=C12
dρLabelID
Dic3×C2×C1296Dic3xC2xC12288,693

Semidirect products G=N:Q with N=C2×Dic3 and Q=C12
extensionφ:Q→Out NdρLabelID
(C2×Dic3)⋊C12 = C3×C23.6D6φ: C12/C3C4 ⊆ Out C2×Dic3244(C2xDic3):C12288,240
(C2×Dic3)⋊2C12 = C3×C6.C42φ: C12/C6C2 ⊆ Out C2×Dic396(C2xDic3):2C12288,265
(C2×Dic3)⋊3C12 = C3×C23.16D6φ: C12/C6C2 ⊆ Out C2×Dic348(C2xDic3):3C12288,648
(C2×Dic3)⋊4C12 = C6×Dic3⋊C4φ: C12/C6C2 ⊆ Out C2×Dic396(C2xDic3):4C12288,694

Non-split extensions G=N.Q with N=C2×Dic3 and Q=C12
extensionφ:Q→Out NdρLabelID
(C2×Dic3).C12 = C3×C12.47D4φ: C12/C3C4 ⊆ Out C2×Dic3484(C2xDic3).C12288,258
(C2×Dic3).2C12 = C3×Dic3⋊C8φ: C12/C6C2 ⊆ Out C2×Dic396(C2xDic3).2C12288,248
(C2×Dic3).3C12 = C3×C24⋊C4φ: C12/C6C2 ⊆ Out C2×Dic396(C2xDic3).3C12288,249
(C2×Dic3).4C12 = C3×D6⋊C8φ: C12/C6C2 ⊆ Out C2×Dic396(C2xDic3).4C12288,254
(C2×Dic3).5C12 = C6×C8⋊S3φ: C12/C6C2 ⊆ Out C2×Dic396(C2xDic3).5C12288,671
(C2×Dic3).6C12 = C3×S3×M4(2)φ: C12/C6C2 ⊆ Out C2×Dic3484(C2xDic3).6C12288,677
(C2×Dic3).7C12 = Dic3×C24φ: trivial image96(C2xDic3).7C12288,247
(C2×Dic3).8C12 = S3×C2×C24φ: trivial image96(C2xDic3).8C12288,670

׿
×
𝔽